4 resultados para silica coating
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Negli impianti utilizzati per la produzione di energia elettrica che sfruttano l'energia solare, quali la tecnologia solare a concentrazione (Solare Termodinamico) sviluppata da ENEA, per minimizzare le dispersioni di calore è necessaria una elevata selettività spettrale. Per ottimizzare l'efficienza dell'impianto è quindi necessario lo sviluppo di materiali innovativi, in grado di minimizzare la quantità di energia dispersa per riflessione. In questo studio, per incrementare la trasmittanza solare dei componenti in vetro presenti nei tubi ricevitori dell'impianto, sono state utilizzate tipologie diverse di rivestimenti antiriflesso (multistrato e a singolo strato poroso). I rivestimenti sono stati ottenuti mediante via umida, con tecnica di sol-gel dip-coating. I sol coprenti sono stati preparati da alcossidi o sali metallici precursori degli ossidi che costituiscono il rivestimento. Sono state approfondite sia la fase di sintesi dei sol coprenti, sia la fase di deposizione sul substrato, che ha richiesto la progettazione e realizzazione di una apparecchiatura prototipale, ossia di un dip-coater in grado di garantire un accurato controllo della velocità di emersione e dell'ambiente di deposizione (temperatura e umidità). Il materiale multistrato applicato su vetro non ha migliorato la trasmittanza del substrato nell'intervallo di lunghezze d'onda dello spettro solare, pur presentando buone caratteristiche antiriflesso nell'intervallo dell'UV-Vis. Al contrario, l'ottimizzazione del rivestimento a base di silice porosa, ha portato all'ottenimento di indici di rifrazione molto bassi (1.15 to 1.18) e ad un incremento della trasmittanza solare dal 91.5% al 96.8%, efficienza superiore agli attuali rivestimenti disponibili in commercio.
Resumo:
The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.
Resumo:
The main aim of this work was the synthesis and applications of functionalized-silica-supported gold nanoparticles. The silica-anchored functionalities employed, e.g. amine, alkynyl carbamate and sulfide moieties, possess a notable affinity with gold, so that they could be able to capture the gold precursor, to spontaneously reduce it (possibly at room temperature), and to stabilize the resulting gold nanoparticles. These new materials, potentially suitable for heterogeneous catalysis applications, could represent a breakthrough among the “green” synthesis of supported gold nanoparticles, since they would circumvent the addition of extra reducing agent and stabilizers, also allowing concomitant absorption of the active catalyst particles on the support immediately after spontaneous formation of gold nanoparticles. In chapter 4 of this thesis is also presented the work developed during a seven-months Marco Polo fellowship stay at the University of Lille (France), regarding nanoparticles nucleation and growth inside a microfluidic system and the study of the corresponding mechanism by in situ XANES spectroscopy. Finally, studies regarding the reparation and reactivity of gold decorated nanodiamonds are also described. Various methods of characterization have been used, such as ultraviolet-visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), X-ray Fluorescence (XRF), Field Emission Gun Scanning Electron Microscopy (SEM-FEG), X-ray Photoionization (XPS), X ray Absorption Spectroscopy (XAS).
Resumo:
The aim of this thesis was to design, synthesize and characterize dye-doped silica nanoparticles (DDSNPs) to be used as chemosensors or labels in bioanalytical applications. DDSNPs represent one of the most versatile and useful components in nanomedicine displaying important features such as high colloid stability in water, low toxicity, one-pot inexpensive synthesis and tunable fluorescence emission. Starting from the one-pot and highly reproducible synthesis of “silica-core/PEG shell” DDSNPs based on the use of micelles of Pluronic F127, in which take place both hydrolysis and condensation of the silica precursor and of the dyes functionalized with a triethoxysilane group, we developed DDSNPs suitable for optical and optoacustic imaging, drug loading and chemical sensing obtaining very interesting results for the further development of nanomedicine.