23 resultados para silencing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The repressor element 1-silencing transcription factor (REST) was first identified as a protein that binds to a 21-bp DNA sequence element (known as repressor element 1 (RE1)) resulting in transcriptional repression of the neural-specific genes [Chong et al., 1995; Schoenherr and Anderson, 1995]. The original proposed role for REST was that of a factor responsible for restricting neuronal gene expression to the nervous system by silencing expression of these genes in non-neuronal cells. Although it was initially thought to repress neuronal genes in non-neuronal cells, the role of REST is complex and tissue dependent. In this study I investigated any role played by REST in the induction and patterning of differentiation of SH-SY5Y human neuroblastoma cells exposed to IGF-I. and phorbol 12- myristate 13-acetate (PMA) To down-regulate REST expression we developed an antisense (AS) strategy based on the use of phosphorothioate oligonucleotides (ODNs). In order to evaluate REST mRNA levels, we developed a real-time PCR technique and REST protein levels were evaluated by western blotting. Results showed that nuclear REST is increased in SH-SY5Y neuroblastoma cells cultured in SFM and exposed to IGF-I for 2-days and it then declines in 5-day-treated cells concomitant with a progressive neurite extension. Also the phorbol ester PMA was able to increase nuclear REST levels after 3-days treatment concomitant to neuronal differentiation of neuroblastoma cells, whereas, at later stages, it is down-regulated. Supporting these data, the exposure to PKC inhibitors (GF10923X and Gö6976) and PMA (16nM) reverted the effects observed with PMA alone. REST levels were related to morphological differentiation, expression of growth coneassociated protein 43 (GAP-43; a gene not regulated by REST) and of synapsin I and βIII tubulin (genes regulated by REST), proteins involved in the early stage of neuronal development. We observed that differentiation of SH-SY5Y cells by IGF-I and PMA was accompanied by a significant increase of these neuronal markers, an effect that was concomitant with REST decrease. In order to relate the decreased REST expression with a progressive neurite extension, I investigated any possible involvement of the ubiquitin–proteasome system (UPS), a multienzymatic pathway which degrades polyubiquinated soluble cytoplasmic proteins [Pickart and Cohen, 2004]. For this purpose, SH-SY5Y cells are concomitantly exposed to PMA and the proteasome inhibitor MG132. In SH-SY5Y exposed to PMA and MG 132, we observed an inverse pattern of expression of synapsin I and β- tubulin III, two neuronal differentiation markers regulated by REST. Their cytoplasmic levels are reduced when compared to cells exposed to PMA alone, as a consequence of the increase of REST expression by proteasome inhibitor. The majority of proteasome substrates identified to date are marked for degradation by polyubiquitinylation; however, exceptions to this principle, are well documented [Hoyt and Coffino, 2004]. Interestingly, REST degradation seems to be completely ubiquitin-independent. The expression pattern of REST could be consistent with the theory that, during early neuronal differentiation induced by IGF-I and PKC, it may help to repress the expression of several genes not yet required by the differentiation program and then it declines later. Interestingly, the observation that REST expression is progressively reduced in parallel with cell proliferation seems to indicate that the role of this transcription factor could also be related to cell survival or to counteract apotosis events [Lawinger et al., 2000] although, as shown by AS-ODN experiments, it does not seem to be directly involved in cell proliferation. Therefore, the decline of REST expression is a comparatively later event during maturation of neuroroblasts in vitro. Thus, we propose that REST is regulated by growth factors, like IGF-I, and PKC activators in a time-dependent manner: it is elevated during early steps of neural induction and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes, concomitantly with a progressive neurite extension. This later decline is regulated by the proteasome system activation in an ubiquitin-indipendent way and adds more evidences to the hypothesis that REST down-regulation contributes to differentiation and arrest of proliferation of neuroblastoma cells. Finally, the glycosylation pattern of the REST protein was analysed, moving from the observation that the molecular weight calculated on REST sequence is about 116 kDa but using western blotting this transcription factor appears to have distinct apparent molecular weight (see Table 1.1): this difference could be explained by post-translational modifications of the proteins, like glycosylation. In fact recently, several studies underlined the importance of O-glycosylation in modulating transcriptional silencing, protein phosphorylation, protein degradation by proteasome and protein–protein interactions [Julenius et al., 2005; Zachara and Hart, 2006]. Deglycosilating analysis showed that REST protein in SH-SY5Y and HEK293 cells is Oglycosylated and not N-glycosylated. Moreover, using several combination of deglycosilating enzymes it is possible to hypothesize the presence of Gal-β(1-3)-GalNAc residues on the endogenous REST, while β(1-4)-linked galactose residues may be present on recombinant REST protein expressed in HEK293 cells. However, the O-glycosylation process produces an immense multiplicity of chemical structures and monosaccharides must be sequentially hydrolyzed by a series of exoglycosidase. Further experiments are needed to characterize all the post-translational modification of the transcription factor REST.
Resumo:
The thesis is set in three different parts, according to the relative experimental models. First, the domestic pig (Sus scrofa) is part of the study on reproductive biotechnologies: the transgenesis technique of Sperm Mediated Gene Transfer is widely studied starting from the quality of the semen, through the study of multiple uptakes of exogenous DNA and lastly used in the production of multi-transgenic blastocysts. Finally we managed to couple the transgenesis pipeline with sperm sorting and therefore produced transgenic embryos of predetermined sex. In the second part of the thesis the attention is on the fruit fly (Drosophila melanogaster) and on its derived cell line: the S2 cells. The in vitro and in vivo models are used to develop and validate an efficient way to knock down the myc gene. First an efficient in vitro protocol is described, than we demonstrate how the decrease in myc transcript remarkably affects the ribosome biogenesis through the study of Polysome gradients, rRNA content and qPCR. In vivo we identified two optimal drivers for the conditional silencing of myc, once the flies are fed with RU486: the first one is throughout the whole body (Tubulin), while the second is a head fat body driver (S32). With these results we present a very efficient model to study the role of myc in multiple aspects of translation. In the third and last part, the focus is on human derived lung fibroblasts (hLF-1), mouse tail fibroblasts and mouse tissues. We developed an efficient assay to quantify the total protein content of the nucleus on a single cell level via fluorescence. We coupled the protocol with classical immunofluorescence so to have at the same time general and particular information, demonstrating that during senescence nuclear proteins increase by 1.8 fold either in human cells, mouse cells and mouse tissues.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.
Resumo:
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
Resumo:
The aim of our work was to study the molecular mechanisms involved in symptoms appearance of plants inoculated either with a virus or with a virus-satellite complex. In the first case, we tried to set up a reliable method for an early identification of PVYNTN strains present in Italy and causing potato tuber necrosis. This, to prevent their spread in the field and to avoid severe yield losses, especially in seed potato production. We tried to localize the particular genomic region responsible for tuber necrosis. To this purpose, we carried out RT-PCR experiments using various primer combinations, covering PVY genomic regions larger than those previously used by other authors. As the previous researchers, though, we were not able to differentiate all NTN from others PVY strains. This probably because of the frequent virus variability, due to both genomic mutations and possible recombination events among different strains. In the second case, we studied the influence of Y-sat (CaRNA5 satellite) on symptoms of CMV (Cucumber mosaic virus) in Nicotiana benthamiana plants: strong yellowing appearance instead of simple mosaic. Wang et al (2004), inoculating the same infectious complex on tobacco plants transformed with a viral suppressor of plant silencing (HC-PRO), did not experience the occurrence of yellowing anymore and, therefore, hypotesized that changes in symptoms were due to plant post transcriptional gene silencing (PTGS) mechanism. In our case, inoculation of N. benthamiana plants transformed with another PTGS viral suppressor (p19), and other plants defective for RNA polymerase 6 (involved in systemic silencing), still resulted in yellowing appearance. This, to our opinion, suggests that in our system another possible mechanism is involved.
Resumo:
Phospholipase C (PLC) has been known to be a key effector protein in signal transduction pathway for cell proliferation and differentiation. Studies on signalling through the insulin/IGF-1 receptors in muscle differentiation have revealed that PLCγ1 is involved during this process and that both mRNA and protein levels were increased during myogenesis. Based on increasing signal transduction pathways that required both PLCγ1 and PKCε, we investigated its role in insulin stimulation of skeletal muscle differentiation. The precise effects of insulin on specific PKC isoforms are as yet unknown. Insulin stimulation produced a gradual increase in PKCε expression and activation of PKCε through skeletal muscle differentiation. By immunoprecipitation we have demonstrated that endogenous PLCγ1 and PKCε belong to the same immunocomplex that increase during through myogenic differentiation. Furthermore, the SH domain of PLCγ1 is involved in the protein complex and that its confine to the Golgi membrane. PLCγ1 has been involved in cyclin D3 up-regulation. By overexpression and silencing approach we have evidenced that PKCε modulate the espression of cyclin D3; the kinase dead form of PKCε doesn’t maintain the same ability. Using a reporter hGH vector we proved that PKCε acts at transcriptional level by affecting the -37 region of cyclin D3 promoter, as has been described previous for PLCγ1. In summary this data proved the involvement of PKCε in the regulation of cyclin D3 expression, together with PLCγ1.
Resumo:
Molecular profiling of Peripheral T-cell lymphomas not otherwise specified Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of tumors that the WHO classification basically subdivides into specified and not otherwise specified (NOS). In Western countries, they represent around 12% of all non-Hodgkin's lymphomas. In particular, PTCL/NOS is the commonest subtype, corresponding to about 60-70% of all T-cell lymphomas. However, it remains a complex entity showing great variety regarding either morphology, immunophenotype or clinical behavior. Specially, the molecular pathology of these tumors is still poorly known. In fact, many alteration were found, but no single genes were demonstrated to have a pathogenetic role. Recently, gene expression profiling (GEP) allowed the identification of PTCL/NOS-associated molecular signatures, leading to better understanding of their histogenesis, pathogenesis and prognostication. Interestingly, proliferation pathways are commonly altered in PTCLs, being highly proliferative cases characterized by poorer prognosis. In this study, we aimed to investigate the possible role in PTCL/NOS pathogenesis of selected molecules, known to be relevant for proliferation control. In particular, we analyzed the cell cycle regulators PTEN and CDKN1B/p27, the NF-kB pathway, and the tyrosin kinase PDGFR. First, we found that PTEN and p27 seem to be regulated in PTCL/NOS as in normal T-lymphocytes, as to what expression and cellular localization are concerned, and do not present structural abnormalities in the vast majority of PTCL/NOS. Secondly, NF-kB pathway appeared to be variably activated in PTCL/NOS. In particular, according to NF-kB gene expression levels, the tumors could be divided into two clusters (C1 and C2). Specially, C1 corresponded to cases presenting with a global down-regulation of the entire pathway, while C2 showed over-expression of genes involved in TNF signaling. Notably, by immunohistochemistry, we showed that either the canonical or the alternative NK-kB pathway were activated in around 40% of cases. Finally, we found PGDFRA to be consistently over-expressed (at mRNA and protein level) and activated in almost all PTCLs/NOS. Noteworthy, when investigating possible causes for PDGFRA deregulation, we had evidences that PDGFR over-expression is due to the absence of miR-152, which appeared to be responsible for PDGFRA silencing in normal T-cells. Furthermore, we could demonstrate that its aberrant activation is sustained by an autocrine loop. Importantly, this is the first case, to the best of our knowledge, of hematological tumor in which tyrosin kinase aberrant activity is determined by deregulated miRNA expression and autocrine loop activation. Taken together, our results provide novel insight in PTCL/NOS pathogenesis by opening new intriguing scenarios for innovative therapeutic interventions.
Resumo:
A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.
Resumo:
Introduction Phospholipase Cb1 (PLC-β1) is a key player in the regulation of nuclear inositol lipid signaling and of a wide range of cellular functions, such as proliferation and differentiation (1,2,3). PLCb1 signaling depends on the cleavage of phosphatidylinositol 4,5-bisphosphate and the formation of the second messengers diacylglycerol and Inositol tris-phosphate which activate canonical protein kinase C (cPKC) isoforms. Here we describe a proteomic approach to find out a potential effector of nuclear PLC-b1 dependent signaling during insulin stimulated myogenic differentiation. Methods Nuclear lysates obtained from insulin induced C2C12 myoblasts were immunoprecipitated with anti-phospho-substrate cPKC antibody. Proteins, stained with Comassie blue, were excised, digested and subsequently analysed in LC-MS/MS. For peptide sequence searching, the mass spectra were processed and analyzed using the Mascot MS/MS ion search program with the NCBI database. Western blotting, GST-pull down and co-immunoprecipitation were performed to study the interaction between eEF1A2 and cPKCs. Site direct mutagenesis was performed to confirm the phosphorylated motif recognized by the antibody. Immunofluorescence analysis, GFP-tagged eEF1A2 vector and subcellular fractionation were performed to study nuclear localization and relative distribution of eEF1A2. Results We have previously shown that PLC-β1 is greatly increased at the nuclear level during insulin-induced myoblasts differentiation and that this nuclear localization is essential for induction of differentiation. Thus, nuclear proteins of insulin stimulated C2C12 myoblasts, were immunoprecipitated with an anti-phospho-substrate cPKC antibody. After Electrophoretic gel separation of proteins immunoprecipitated, several molecules were identified by LC-MS/MS. Among these most relevant and unexpected was eukaryotic elongation factor 1 alpha 2 (eEF1A2). We found that eEF1A2 is phosphorylated by PKCb1 and that these two molecules coimmunolocalized at the nucleolar level. eEF1A2 could be phosphorylated in many sites among which both threonine and serine residues. By site direct mutagenesis we demonstrated that it is the serine residue of the motif recognized by the antibody that is specifically phosphorylated by PKCb1. The silencing of PLCb1 gives rise to a reduction of expression and phosphorylation levels of eEF1A2 indicating this molecule as a target of nuclear PLCb1 regulatory network during myoblasts differentiation.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
Caveolin-1 (Cav-1), the essential structural constituent of caveolae, which are flask-shaped invaginations of the plasma membrane, has been found to play a key role in the modulation of cell proliferation and cancer development. It seems to act as an oncosuppressor or a promoter of growth, depending on the histotype, stage and grade of each tumour. The aim of this study was to analyze the effects of Caveolin-1 gene silencing on the proliferation of human lung cancer and osteosarcoma in vitro. Our data show that Cav-1 silencing blocks the growth in both metastatic lung cancer cell lines analyzed, suggesting a proliferation promoting action of the protein in these cells. A marked decrease of phospho-Akt, phospho-ERK, STAT3, cyclin D1, CDK4 and consequently of phospho-Rb expression was evident in the cells treated with Cav-1 siRNA. With regards to osteosarcoma, we demonstrated that the suppression of Cav-1 results in the blocking of MG-63 and in the slowing down of HOS proliferation, suggesting a role for Cav-1 as a promoter of tumour growth in these cell lines. A marked decrease of phospho-Akt, cyclin E, CDK2 and phospho-Rb and an increase of p21 expression levels were evident in the cells treated with Cav-1 siRNA. Our results suggest two new cell cycle inhibiting pathways, mediated by Cav-1 knock-down, and provide new insights into the molecular mechanisms underlying the tumour-promoting role of Cav-1 in lung cancer and osteosarcoma. In this work we also investigated the role of estrogens in lung cancer and the functional cross-talk between Cav-1 and estrogens/estrogen receptors in it. Our results show that 17β-estradiol induces proliferation either in RAL or in SCLC-R1 cells and that both cell lines are sensitive to 4-OHT antiproliferative effect. The sensitivity to estrogen stimulation seems to be gender- and/or histological type-independent in metastatic lung cancer in vitro.
Resumo:
Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are the two most common inherited optic neuropathies and both are the result of mitochondrial dysfunctions. Despite the primary mutations causing these disorders are different, being an mtDNA mutation in subunits of complex I in LHON and defects in the nuclear gene encoding the mitochondrial protein OPA1 in ADOA, both pathologies share some peculiar features, such a variable penetrance and tissue-specificity of the pathological processes. Probably, one of the most interesting and unclear aspect of LHON is the variable penetrance. This phenomenon is common in LHON families, most of them being homoplasmic mutant. Inter-family variability of penetrance may be caused by nuclear or mitochondrial ‘secondary’ genetic determinants or other predisposing triggering factors. We identified a compensatory mechanism in LHON patients, able to distinguish affected individuals from unaffected mutation carriers. In fact, carrier individuals resulted more efficient than affected subjects in increasing the mitochondrial biogenesis to compensate for the energetic defect. Thus, the activation of the mitochondrial biogenesis may be a crucial factor in modulating penetrance, determining the fate of subjects harbouring LHON mutations. Furthermore, mtDNA content can be used as a molecular biomarker which, for the first time, clearly differentiates LHON affected from LHON carrier individuals, providing a valid mechanism that may be exploited for development of therapeutic strategies. Although the mitochondrial biogenesis gained a relevant role in LHON pathogenesis, we failed to identify a genetic modifying factor for the variable penetrance in a set of candidate genes involved in the regulation of this process. A more systematic high-throughput approach will be necessary to select the genetic variants responsible for the different efficiency in activating mitochondrial biogenesis. A genetic modifying factor was instead identified in the MnSOD gene. The SNP Ala16Val in this gene seems to modulate LHON penetrance, since the Ala allele in this position significantly predisposes to be affected. Thus, we propose that high MnSOD activity in mitochondria of LHON subjects may produce an overload of H2O2 for the antioxidant machinery, leading to release from mitochondria of this radical and promoting a severe cell damage and death ADOA is due to mutation in the OPA1 gene in the large majority of cases. The causative nuclear defects in the remaining families with DOA have not been identified yet, but a small number of families have been mapped to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8). Recently, a form of DOA and premature cataract (ADOAC) has been associated to pathogenic mutations of the OPA3 gene, encoding a mitochondrial protein. In the last year OPA3 has been investigated by two different groups, but a clear function for this protein and the pathogenic mechanism leading to ADOAC are still unclear. Our study on OPA3 provides new information about the pattern of expression of the two isoforms OPA3V1 and OPA3V2, and, moreover, suggests that OPA3 may have a different function in mitochondria from OPA1, the major site for ADOA mutations. In fact, based on our results, we propose that OPA3 is not involved in the mitochondrial fusion process, but, on the contrary, it may regulate mitochondrial fission. Furthermore, at difference from OPA1, we excluded a role for OPA3 in mtDNA maintenance and we failed to identify a direct interaction between OPA3 and OPA1. Considering the results from overexpression and silencing of OPA3, we can conclude that the overexpression has more drastic consequences on the cells than silencing, suggesting that OPA3 may cause optic atrophy via a gain-of-function mechanism. These data provide a new starting point for future investigations aimed at identifying the exact function of OPA3 and the pathogenic mechanism causing ADOAC.
Resumo:
Beet necrotic yellow vein virus (BNYVV), the leading infectious agent that affects sugar beet, is included within viruses transmitted through the soil from plasmodiophorid as Polymyxa betae. BNYVV is the causal agent of Rhizomania, which induces abnormal rootlet proliferation and is widespread in the sugar beet growing areas in Europe, Asia and America; for review see (Peltier et al., 2008). In this latter continent, Beet soil-borne mosaic virus (BSBMV) has been identified (Lee et al., 2001) and belongs to the benyvirus genus together with BNYVV, both vectored by P. betae. BSBMV is widely distributed only in the United States and it has not been reported yet in others countries. It was first identified in Texas as a sugar beet virus morphologically similar but serologically distinct to BNYVV. Subsequent sequence analysis of BSBMV RNAs evidenced similar genomic organization to that of BNYVV but sufficient molecular differences to distinct BSBMV and BNYVV in two different species (Rush et al., 2003). Benyviruses field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs -1 contains a single long ORF encoding polypeptide that shares amino acid homology with known viral RNA-dependent RNA polymerases (RdRp) and helicases. RNAs -2 contains six ORFs: capsid protein (CP), one readthrough protein, triple gene block proteins (TGB) that are required for cell-to-cell virus movement and the sixth 14 kDa ORF is a post-translation gene silencing suppressor. RNAs -3 is involved on disease symptoms and is essential for virus systemic movement. BSBMV RNA-3 can be trans-replicated, trans-encapsidated by the BNYVV helper strain (RNA-1 and -2) (Ratti et al., 2009). BNYVV RNA-4 encoded one 31 kDa protein and is essential for vector interactions and virus transmission by P. betae (Rahim et al., 2007). BNYVV RNA-5 encoded 26 kDa protein that improve virus infections and accumulation in the hosts. We are interest on BSBMV effect on Rhizomania studies using powerful tools as full-length infectious cDNA clones. B-type full-length infectious cDNA clones are available (Quillet et al., 1989) as well as A/P-type RNA-3, -4 and -5 from BNYVV (unpublished). A-type BNYVV full-length clones are also available, but RNA-1 cDNA clone still need to be modified. During the PhD program, we start production of BSBMV full-length cDNA clones and we investigate molecular interactions between plant and Benyviruses exploiting biological, epidemiological and molecular similarities/divergences between BSBMV and BNYVV. During my PhD researchrs we obtained full length infectious cDNA clones of BSBMV RNA-1 and -2 and we demonstrate that they transcripts are replicated and packaged in planta and able to substitute BNYVV RNA-1 or RNA-2 in a chimeric viral progeny (BSBMV RNA-1 + BNYVV RNA-2 or BNYVV RNA-1 + BSBMV RNA-2). During BSBMV full-length cDNA clones production, unexpected 1,730 nts long form of BSBMV RNA-4 has been detected from sugar beet roots grown on BSBMV infected soil. Sequence analysis of the new BSBMV RNA-4 form revealed high identity (~100%) with published version of BSBMV RNA-4 sequence (NC_003508) between nucleotides 1-608 and 1,138-1,730, however the new form shows 528 additionally nucleotides between positions 608-1,138 (FJ424610). Two putative ORFs has been identified, the first one (nucleotides 383 to 1,234), encode a protein with predicted mass of 32 kDa (p32) and the second one (nucleotides 885 to 1,244) express an expected product of 13 kDa (p13). As for BSBMV RNA-3 (Ratti et al., 2009), full-length BSBMV RNA-4 cDNA clone permitted to obtain infectious transcripts that BNYVV viral machinery (Stras12) is able to replicate and to encapsidate in planta. Moreover, we demonstrated that BSBMV RNA-4 can substitute BNYVV RNA-4 for an efficient transmission through the vector P. betae in Beta vulgaris plants, demonstrating a very high correlation between BNYVV and BSBMV. At the same time, using BNYVV helper strain, we studied BSBMV RNA-4’s protein expression in planta. We associated a local necrotic lesions phenotype to the p32 protein expression onto mechanically inoculated C. quinoa. Flag or GFP-tagged sequences of p32 and p13 have been expressed in viral context, using Rep3 replicons, based on BNYVV RNA-3. Western blot analyses of local lesions contents, using FLAG-specific antibody, revealed a high molecular weight protein, which suggest either a strong interaction of BSBMV RNA4’s protein with host protein(s) or post translational modifications. GFP-fusion sequences permitted the subcellular localization of BSBMV RNA4’s proteins. Moreover we demonstrated the absence of self-activation domains on p32 by yeast two hybrid system approaches. We also confirmed that p32 protein is essential for virus transmission by P. betae using BNYVV helper strain and BNYVV RNA-3 and we investigated its role by the use of different deleted forms of p32 protein. Serial mechanical inoculation of wild-type BSBMV on C. quinoa plants were performed every 7 days. Deleted form of BSBMV RNA-4 (1298 bp) appeared after 14 passages and its sequence analysis shows deletion of 433 nucleotides between positions 611 and 1044 of RNA-4 new form. We demonstrated that this deleted form can’t support transmission by P. betae using BNYVV helper strain and BNYVV RNA-3, moreover we confirmed our hypothesis that BSBMV RNA-4 described by Lee et al. (2001) is a deleted form. Interesting after 21 passages we identifed one chimeric form of BSBMV RNA-4 and BSBMV RNA-3 (1146 bp). Two putative ORFs has been identified on its sequence, the first one (nucleotides 383 to 562), encode a protein with predicted mass of 7 kDa (p7), corresponding to the N-terminal of p32 protein encoded by BSBMV RNA-4; the second one (nucleotides 562 to 789) express an expected product of 9 kDa (p9) corresponding to the C-terminal of p29 encoded by BSBMV RNA-3. Results obtained by our research in this topic opened new research lines that our laboratories will develop in a closely future. In particular BSBMV p32 and its mutated forms will be used to identify factors, as host or vector protein(s), involved in the virus transmission through P. betae. The new results could allow selection or production of sugar beet plants able to prevent virus transmission then able to reduce viral inoculum in the soil.
Resumo:
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. The aim of this study was to identify molecular events involved in rhabdomyosarcoma onset for the development of new therapeutic approaches against specific molecular targets. BALB-p53neu mice develop pelvic rhabdomyosarcoma and combines the activation of HER-2/neu oncogene with the inactivation of an allele of p53 oncosuppressor gene. Gene expression profiling led to the identification of genes potentially involved in rhabdomyosarcoma genesis and therefore of candidate targets. The pattern of expression of p53, HER-2/neu, CDKN2A/p19ARF and IGF-2 suggested that these alterations might be involved in gender-, site- and strain-specific development of rhabdomyosarcoma. Other genes such as CDKN1A/p21 might be involved. The role of IGF-2, CDKN2A/p19ARF and CDKN1A/p21 in tumor growth was investigated with siRNA in murine rhabdomyosarcoma cells. Silencing of p19ARF and p21 induced inhibition of growth and of migration ability, indicating a possible pro-tumor and pro-metastatic role in rhabdomyosarcoma in absence of p53. In addition the autocrine IGF-2/IGF-1R loop found in early phases of cancer progression strengthens its key role in sustaining rhabdomyosarcoma growth. As rhabdomyosarcoma displays defective myogenic differentiation, a therapeutic approach aimed at enhancing myogenic differentiation of rhabdomyosarcoma cells. Forced expression of myogenin was able to restore myogenic differentiation, significantly reduced cell motility and impaired tumor growth and metastatic spread. IL-4 treatment increased rhabdomyosarcoma cell growth, decreased myogenin expression and promoted migration of cells lacking myogenin. Another approach was based on small kinase inhibitors. Agents specifically targeting members of the HER family (Lapatinib), of the IGF system (NVP-AEW541) or downstream signal transducers (NVP-BEZ235) were investigated in vitro in human rhabdomyosarcoma cell lines as therapeutic anti-tumor and anti-metastatic tools. The major effects were obtained with NVP-BEZ235 treatment that was able to strongly inhibit cell growth in vitro and showed anti-metastatic effects in vivo.