2 resultados para share-based payments

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial robots are both versatile and high performant, enabling the flexible automation typical of the modern Smart Factories. For safety reasons, however, they must be relegated inside closed fences and/or virtual safety barriers, to keep them strictly separated from human operators. This can be a limitation in some scenarios in which it is useful to combine the human cognitive skill with the accuracy and repeatability of a robot, or simply to allow a safe coexistence in a shared workspace. Collaborative robots (cobots), on the other hand, are intrinsically limited in speed and power in order to share workspace and tasks with human operators, and feature the very intuitive hand guiding programming method. Cobots, however, cannot compete with industrial robots in terms of performance, and are thus useful only in a limited niche, where they can actually bring an improvement in productivity and/or in the quality of the work thanks to their synergy with human operators. The limitations of both the pure industrial and the collaborative paradigms can be overcome by combining industrial robots with artificial vision. In particular, vision can be exploited for a real-time adjustment of the pre-programmed task-based robot trajectory, by means of the visual tracking of dynamic obstacles (e.g. human operators). This strategy allows the robot to modify its motion only when necessary, thus maintain a high level of productivity but at the same time increasing its versatility. Other than that, vision offers the possibility of more intuitive programming paradigms for the industrial robots as well, such as the programming by demonstration paradigm. These possibilities offered by artificial vision enable, as a matter of fact, an efficacious and promising way of achieving human-robot collaboration, which has the advantage of overcoming the limitations of both the previous paradigms yet keeping their strengths.