16 resultados para sequencing batch reactors
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.
Resumo:
In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.
Resumo:
Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).
Resumo:
In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients
Resumo:
Pediatric acute myeloid leukemia (AML) is a molecularly heterogeneous disease that arises from genetic alterations in pathways that regulate self-renewal and myeloid differentiation. While the majority of patients carry recurrent chromosomal translocations, almost 20% of childhood AML do not show any recognizable cytogenetic alteration and are defined as cytogenetically normal (CN)-AML. CN-AML patients have always showed a great variability in response to therapy and overall outcome, underlining the presence of unknown genetic changes, not detectable by conventional analyses, but relevant for pathogenesis, and outcome of AML. The development of novel genome-wide techniques such as next-generation sequencing, have tremendously improved our ability to interrogate the cancer genome. Based on this background, the aim of this research study was to investigate the mutational landscape of pediatric CN-AML patients negative for all the currently known somatic mutations reported in AML through whole-transcriptome sequencing (RNA-seq). RNA-seq performed on diagnostic leukemic blasts from 19 pediatric CN-AML cases revealed a considerable incidence of cryptic chromosomal rearrangements, with the identification of 21 putative fusion genes. Several of the fusion genes that were identified in this study are recurrent and might have a prognostic and/or therapeutic relevance. A paradigm of that is the CBFA2T3-GLIS2 fusion, which has been demonstrated to be a common alteration in pediatric CN-AML, predicting poor outcome. Important findings have been also obtained in the identification of novel therapeutic targets. On one side, the identification of NUP98-JARID1A fusion suggests the use of disulfiram; on the other, here we describe alteration-activating tyrosine kinases, providing functional data supporting the use of tyrosine kinase inhibitors to specifically inhibit leukemia cells. This study provides new insights in the knowledge of genetic alterations underlying pediatric AML, defines novel prognostic markers and putative therapeutic targets, and prospectively ensures a correct risk stratification and risk-adapted therapy also for the “all-neg” AML subgroup.
Resumo:
This work presents first a study of the national and international laws in the fields of safety, security and safeguards. The international treaties and the recommendations issued by the IAEA as well as the national regulations in force in France, the United States and Italy are analyzed. As a result of this, a comparison among them is presented. Given the interest of the Japan Atomic Energy Agency for the aspects of criminal penalties and monetary, also the Japanese case is analyzed. The main part of this work was held at the JAEA in the field of proliferation resistance (PR) and physical protection (PP) of a GEN IV sodium fast reactor. For this purpose the design of the system is completed and the PR & PP methodology is applied to obtain data usable by designers for the improvement of the system itself. Due to the presence of sensitive data, not all the details can be disclosed. The reactor site of a hypothetical and commercial sodium-cooled fast neutron nuclear reactor system (SFR) is used as the target NES for the application of the methodology. The methodology is applied to all the PR and PP scenarios: diversion, misuse and breakout; theft and sabotage. The methodology is applied to the SFR to check if this system meets the target of PR and PP as described in the GIF goal; secondly, a comparison between the SFR and a LWR is performed to evaluate if and how it would be possible to improve the PR&PP of the SFR. The comparison is implemented according to the example development target: achieving PR&PP similar or superior to domestic and international ALWR. Three main actions were performed: implement the evaluation methodology; characterize the PR&PP for the nuclear energy system; identify recommendations for system designers through the comparison.
Resumo:
I sottotipi H1N1, H1N2 e H3N2 di influenza A virus sono largamente diffusi nella popolazione suina di tutto il mondo. Nel presente lavoro è stato sviluppato un protocollo di sequenziamento di c.d. nuova generazione, su piattaforma Ion Torrent PGM, idoneo per l’analisi di tutti i virus influenzali suini (SIV). Per valutare l’evoluzione molecolare dei SIV italiani, sono stati sequenziati ed analizzati mediante analisi genomica e filogenetica un totale di sessantadue ceppi di SIV appartenenti ai sottotipi H1N1, H1N2 e H3N2, isolati in Italia dal 1998 al 2014. Sono stati evidenziati in sei campioni due fenomeni di riassortimento: tutti i SIV H1N2 esaminati presentavano una neuraminidasi di derivazione umana, diversa da quella dei SIV H1N2 circolanti in Europa, inoltre l’emoagglutinina (HA) di due isolati H1N2 era originata dal riassortimento con un SIV H1N1 avian-like. L’analisi molecolare dell’HA ha permesso di rivelare un’inserzione di due amminoacidi in quattro SIV H1N1 pandemici e una delezione di due aminoacidi in quattro SIV H1N2, entrambe a livello del sito di legame con il recettore cellulare. E’ stata inoltre evidenziata un’elevata omologia di un SIV H1N1 con ceppi europei isolati negli anni ’80, suggerendo la possibile origine vaccinale di questo virus. E’ stato possibile, in aggiunta, applicare il nuovo protocollo sviluppato per sequenziare un virus influenzale aviare altamente patogeno trasmesso all’uomo, direttamente da campione biologico. La diversità genetica nei SIV esaminati in questo studio conferma l’importanza di un continuo monitoraggio della costellazione genomica dei virus influenzali nella popolazione suina.
Resumo:
Since the Three Mile Island Unit 2 (TMI-2), accident in 1979 which led to the meltdown of about one half of the reactor core and to limited releases of radioactive materials to the environment, an important international effort has been made on severe accident research. The present work aims to investigate the behaviour of a Small Modular Reactor during severe accident conditions. In order to perform these analyses, a SMR has been studied for the European reference severe accident analysis code ASTEC, developed by IRSN and GRS. In the thesis will be described in detail the IRIS Small Modular Reactor; the reference reactor chosen to develop the ASTEC input deck. The IRIS model was developed in the framework of a research collaboration with the IRSN development team. In the thesis will be described systematically the creation of the ASTEC IRIS input deck: the nodalization scheme adopted, the solution used to simulate the passive safety systems and the strong interaction between the reactor vessel and the containment. The ASTEC SMR model will be tested against the RELAP-GOTHIC coupled code model, with respect to a Design Basis Accident, to evaluate the capability of the ASTEC code on reproducing correctly the behaviour of the nuclear system. Once the model has been validated, a severe accident scenario will be simulated and the obtained results along with the nuclear system response will be analysed.
Resumo:
Heavy Liquid Metal Cooled Reactors are among the concepts, fostered by the GIF, as potentially able to comply with stringent safety, economical, sustainability, proliferation resistance and physical protection requirements. The increasing interest around these innovative systems has highlighted the lack of tools specifically dedicated to their core design stage. The present PhD thesis summarizes the three years effort of, partially, closing the mentioned gap, by rationally defining the role of codes in core design and by creating a development methodology for core design-oriented codes (DOCs) and its subsequent application to the most needed design areas. The covered fields are, in particular, the fuel assembly thermal-hydraulics and the fuel pin thermo-mechanics. Regarding the former, following the established methodology, the sub-channel code ANTEO+ has been conceived. Initially restricted to the forced convection regime and subsequently extended to the mixed one, ANTEO+, via a thorough validation campaign, has been demonstrated a reliable tool for design applications. Concerning the fuel pin thermo-mechanics, the will to include safety-related considerations at the outset of the pin dimensioning process, has given birth to the safety-informed DOC TEMIDE. The proposed DOC development methodology has also been applied to TEMIDE; given the complex interdependence patterns among the numerous phenomena involved in an irradiated fuel pin, to optimize the code final structure, a sensitivity analysis has been performed, in the anticipated application domain. The development methodology has also been tested in the verification and validation phases; the latter, due to the low availability of experiments truly representative of TEMIDE's application domain, has only been a preliminary attempt to test TEMIDE's capabilities in fulfilling the DOC requirements upon which it has been built. In general, the capability of the proposed development methodology for DOCs in delivering tools helping the core designer in preliminary setting the system configuration has been proven.
Resumo:
Pure hydrogen production from methane is a multi-step process run on a large scale for economic reasons. However, hydrogen can be produced in a one-pot continuous process for small scale applications, namely Low Temperature Steam Reforming. Here, Steam Reforming is carried out in a reactor whose walls are composed by a membrane selective toward hydrogen. Pd is the most used membrane material due to its high permeability and selectivity. However, Pd deteriorates at temperatures higher than 500°C, thus the operative temperature of the reaction has to be lowered. However, the employment of a membrane reactor may allow to give high yields thanks to hydrogen removal, which shifts the reaction toward the products. Moreover, pure hydrogen is produced. This work is concentrated on the synthesis of a catalytic system and the investigation of its performances in different processes, namely oxy-reforming, steam reforming and water gas shift, to find appropriate conditions for hydrogen production in a catalytic membrane reactor. The catalyst supports were CeZr and Zr oxides synthesized by microemulsion, impregnated with different noble metals. Pt, Rh and PtRh based catalysts were tested in the oxy reforming process at 500°C, where Rh on CeZr gave the most interesting results. On the opposite, the best performances in low temperature steam reforming were obtained with Rh impregnated on Zr oxide. This catalyst was selected to perform low temperature steam reforming in a Pd membrane reactor. The hydrogen removal given by the membrane allowed to increase the methane conversion over the equilibrium of a classical fixed bed reactor thanks to an equilibrium shift effect. High hydrogen production and recoveries were also obtained, and no other compound permeated through the membrane which proved to be hydrogen selective.
Resumo:
The research activity carried out in the Brasimone Research Center of ENEA concerns the development and mechanical characterization of steels conceived as structural materials for future fission reactors (Heavy Liquid Metal IV Generation reactors: MYRRHA and ALFRED) and for the future fusion reactor DEMO. Within this framework, two parallel lines of research have been carried out: (i) characterization in liquid lead of steels and weldings for the components of the IV Generation fission reactors (GIV) by means of creep and SSRT (Slow Strain Rate Tensile) tests; (ii) development and screening on mechanical properties of RAFM (Reduced Activation Ferritic Martensitic) steels to be employed as structural materials of the future DEMO fusion reactor. The doctoral work represents therefore a comprehensive report of the research carried out on nuclear materials both from the point of view of the qualification of existing (commercial) materials for their application in the typical environmental conditions of 4th generation fission reactors operating with lead as coolant, and from the point of view of the metallurgical study (with annexed microstructural and mechanical characterization of the selected compositions / Thermo Mechanical Treatment (TMT) options) of new compositional variants to be proposed for the “Breeding Blanket” of the future DEMO Fusion Reactor.
Resumo:
Hereditary optic neuropathies (HON) are a genetic cause of visual impairment characterized by degeneration of retinal ganglion cells. The majority of HON are caused by pathogenic variants in mtDNA genes and in gene OPA1. However, several other genes can cause optic atrophy and can only be identified by high throughput genetic analysis. Whole Exome Sequencing (WES) is becoming the primary choice in rare disease molecular diagnosis, being both cost effective and informative. We performed WES on a cohort of 106 cases, of which 74 isolated ON patients (ON) and 32 syndromic ON patients (sON). The total diagnostic yield amounts to 27%, slightly higher for syndromic ON (31%) than for isolated ON (26%). The majority of genes found are related to mitochondrial function and already reported for harbouring HON pathogenic variants: ACO2, AFG3L2, C19orf12, DNAJC30, FDXR, MECR, MTFMT, NDUFAF2, NDUFB11, NDUFV2, OPA1, PDSS1, SDHA, SSBP1, and WFS1. Among these OPA1, ACO2, and WFS1 were confirmed as the most relevant genetic causes of ON. Moreover, several genes were identified, especially in sON patients, with direct impairment of non-mitochondrial molecular pathways: from autophagy and ubiquitin system (LYST, SNF8, WDR45, UCHL1), to neural cells development and function (KIF1A, GFAP, EPHB2, CACNA1A, CACNA1F), but also vitamin metabolism (SLC52A2, BTD), cilia structure (USH2A), and nuclear pore shuttling (NUTF2). Functional validation on yeast model was performed for pathogenic variants detected in MECR, MTFMT, SDHA, and UCHL1 genes. For SDHA and UCHL1 also muscle biopsy and fibroblast cell lines from patients were analysed, pointing to possible pathogenic mechanisms that will be investigated in further studies. In conclusion, WES proved to be an efficient tool when applied to our ON cohort, for both common disease-genes identification and novel genes discovery. It is therefore recommended to consider WES in ON molecular diagnostic pipeline, as for other rare genetic diseases.
Resumo:
Legionella is a Gram-negative bacterium that represent a public health issue, with heavy social and economic impact. Therefore, it is mandatory to provide a proper environmental surveillance and risk assessment plan to perform Legionella control in water distribution systems in hospital and community buildings. The thesis joins several methodologies in a unique workflow applied for the identification of non-pneumophila Legionella species (n-pL), starting from standard methods as culture and gene sequencing (mip and rpoB), and passing through innovative approaches as MALDI-TOF MS technique and whole genome sequencing (WGS). The results obtained, were compared to identify the Legionella isolates, and lead to four presumptive novel Legionella species identification. One of these four new isolates was characterized and recognized at taxonomy level with the name of Legionella bononiensis (the 64th Legionella species). The workflow applied in this thesis, help to increase the knowledge of Legionella environmental species, improving the description of the environment itself and the events that promote the growth of Legionella in their ecological niche. The correct identification and characterization of the isolates permit to prevent their spread in man-made environment and contain the occurrence of cases, clusters, or outbreaks. Therefore, the experimental work undertaken, could support the preventive measures during environmental and clinical surveillance, improving the study of species often underestimated or still unknown.
Resumo:
The artisanal food chain is enriched by a wide diversity of local food productions with delightful organoleptic characteristics and valuable nutritional properties. Despite their increasing worldwide popularity and appeal, several food safety challenges are addressed in artisanal facilities context suffering from less standardized processing conditions. In such scenario, recent advances in molecular typing and genomic surveillance (e.g., Whole Genome Sequencing [WGS]) represent an unprecedent solution capable of inferring sources of contamination as well as contributing to food safety along the artisanal food continuum. The overall objective of this PhD thesis was to explore potential microbial hazards among different artisanal food productions of animal origins (dairy and meat-derived) typical of the food culture and heritage landscape belonging to Mediterranean countries. Three different studies were then carried out, specifically focussing on: 1) compare the seasonal variability of microbiological quality and potential occurrence of microbial hazards in two batches of Italian artisanal fermented dairy and meat productions; 2) Investigate genetic relationships as well as virulome and resistome of foodborne pathogens isolated within dairy and meat-derived productions located in Italy, Spain, Portugal and Morocco; 3) investigate the population structure, virulome, resistome and mobilome of Klebsiella spp. isolates collected from study 1, including an extended range of public sequences.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.