8 resultados para sensory gating
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work I address the study of language comprehension in an “embodied” framework. Firstly I show behavioral evidence supporting the idea that language modulates the motor system in a specific way, both at a proximal level (sensibility to the effectors) and at the distal level (sensibility to the goal of the action in which the single motor acts are inserted). I will present two studies in which the method is basically the same: we manipulated the linguistic stimuli (the kind of sentence: hand action vs. foot action vs. mouth action) and the effector by which participants had to respond (hand vs. foot vs. mouth; dominant hand vs. non-dominant hand). Response times analyses showed a specific modulation depending on the kind of sentence: participants were facilitated in the task execution (sentence sensibility judgment) when the effector they had to use to respond was the same to which the sentences referred. Namely, during language comprehension a pre-activation of the motor system seems to take place. This activation is analogous (even if less intense) to the one detectable when we practically execute the action described by the sentence. Beyond this effector specific modulation, we also found an effect of the goal suggested by the sentence. That is, the hand effector was pre-activated not only by hand-action-related sentences, but also by sentences describing mouth actions, consistently with the fact that to execute an action on an object with the mouth we firstly have to bring it to the mouth with the hand. After reviewing the evidence on simulation specificity directly referring to the body (for instance, the kind of the effector activated by the language), I focus on the specific properties of the object to which the words refer, particularly on the weight. In this case the hypothesis to test was if both lifting movement perception and lifting movement execution are modulated by language comprehension. We used behavioral and kinematics methods, and we manipulated the linguistic stimuli (the kind of sentence: the lifting of heavy objects vs. the lifting of light objects). To study the movement perception we measured the correlations between the weight of the objects lifted by an actor (heavy objects vs. light objects) and the esteems provided by the participants. To study the movement execution we measured kinematics parameters variance (velocity, acceleration, time to the first peak of velocity) during the actual lifting of objects (heavy objects vs. light objects). Both kinds of measures revealed that language had a specific effect on the motor system, both at a perceptive and at a motoric level. Finally, I address the issue of the abstract words. Different studies in the “embodied” framework tried to explain the meaning of abstract words The limit of these works is that they account only for subsets of phenomena, so results are difficult to generalize. We tried to circumvent this problem by contrasting transitive verbs (abstract and concrete) and nouns (abstract and concrete) in different combinations. The behavioral study was conducted both with German and Italian participants, as the two languages are syntactically different. We found that response times were faster for both the compatible pairs (concrete verb + concrete noun; abstract verb + abstract noun) than for the mixed ones. Interestingly, for the mixed combinations analyses showed a modulation due to the specific language (German vs. Italian): when the concrete word precedes the abstract one responses were faster, regardless of the word grammatical class. Results are discussed in the framework of current views on abstract words. They highlight the important role of developmental and social aspects of language use, and confirm theories assigning a crucial role to both sensorimotor and linguistic experience for abstract words.
Resumo:
Foods that provide medical and health benefits or have a role in disease risk prevention are termed functional foods. The functionality of functional foods is derived from bioactive compounds that are extranutritional constituents present in small quantities in food. Bioactive components include a range of chemical compounds with varying structures such as carotenoids, flavonoids, plant sterols, omega-3 fatty acids (n-3), allyl and diallyl sulfides, indoles (benzopyrroles), and phenolic acids. The increasing consumer interest in natural bioactive compounds has brought about a rise in demand for these kinds of compounds and, in parallel, an increasing number of scientific studies have this type of substance as main topic. The principal aim of this PhD research project was the study of different bioactive and toxic compounds in several natural matrices. To achieve this goal, chromatographic, spectroscopic and sensorial analysis were performed. This manuscript reports the main results obtained in the six activities briefly summarized as follows: • SECTION I: the influence of conventional packaging on lipid oxidation of pasta was evaluated in egg spaghetti. • SECTION II: the effect of the storage at different temperatures of virgin olive oil was monitored by peroxide value, fatty acid activity, OSI test and sensory analysis. • SECTION III: the glucosinolate and phenolic content of 37 rocket salad accessions were evaluated, comparing Eruca sativa and Diplotaxis tenuifolia species. Sensory analysis and the influence of the phenolic and glucosinolate composition on sensory attributes of rocket salads has been also studied. • SECTION IV: ten buckwheat honeys were characterised on the basis of their pollen, physicochemical, phenolic and volatile composition. • SECTION V: the polyphenolic fraction, anthocyanins and other polar compounds, the antioxidant capacity and the anty-hyperlipemic action of the aqueous extract of Hibiscus sabdariffa were achieved. • SECTION VI: the optimization of a normal phase high pressure liquid chromatography–fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa powder and chocolate samples was performed.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.
Resumo:
The quality of fish products is indispensably linked to the freshness of the raw material modulated by appropriate manipulation and storage conditions, specially the storage temperature after catch. The purpose of the research presented in this thesis, which was largely conducted in the context of a research project funded by Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF), concerned the evaluation of the freshness of farmed and wild fish species, in relation to different storage conditions, under ice (0°C) or at refrigeration temperature (4°C). Several specimens of different species, bogue (Boops boops), red mullet (Mullus barbatus), sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax), during storage, under the different temperature conditions adopted, have been examined. The assessed control parameters were physical (texture, through the use of a dynamometer; visual quality using a computer vision system (CVS)), chemical (through footprint metabolomics 1H-NMR) and sensory (Quality Index Method (QIM). Microbiological determinations were also carried out on the species of hake (Merluccius merluccius). In general obtained results confirmed that the temperature of manipulation/conservation is a key factor in maintaining fish freshness. NMR spectroscopy showed to be able to quantify and evaluate the kinetics for unselected compounds during fish degradation, even a posteriori. This can be suitable for the development of new parameters related to quality and freshness. The development of physical methods, particularly the image analysis performed by computer vision system (CVS), for the evaluation of fish degradation, is very promising. Among CVS parameters, skin colour, presence and distribution of gill mucus, and eye shape modification evidenced a high sensibility for the estimation of fish quality loss, as a function of the adopted storage conditions. Particularly the eye concavity index detected on fish eye showed a high positive correlation with total QIM score.
Resumo:
Food suppliers currently measure apple quality considering basic pomological descriptors. Sensory analysis is expensive, does not permit to analyse many samples, and cannot be implemented for measuring quality properties in real time. However, sensory analysis is the best way to precisely describe food eating quality, since it is able to define, measure, and explain what is really perceivable by human senses and using a language that closely reflects the consumers’ perception. On the basis of such observations, we developed a detailed protocol for apple sensory profiling by descriptive sensory analysis and instrumental measurements. The collected sensory data were validated by applying rigorous scientific criteria for sensory analysis. The method was then applied for studying sensory properties of apples and their changes in relation to different pre- and post-harvest factors affecting fruit quality, and demonstrated to be able to discriminate fruit varieties and to highlight differences in terms of sensory properties. The instrumental measurements confirmed such results. Moreover, the correlation between sensory and instrumental data was studied, and a new effective approach was defined for the reliable prediction of sensory properties by instrumental characterisation. It is therefore possible to propose the application of this sensory-instrumental tool to all the stakeholders involved in apple production and marketing, to have a reliable description of apple fruit quality.
Resumo:
At the beginning, this Ph.D. project led to an overview of the most common and emerging types of fraud and possible countermeasures in the olive oil sector. Furthermore, possible weaknesses in the current conformity check system for olive oil were highlighted. Among those, despite the organoleptic assessment is a fundamental tool for establishing the virgin olive oils (VOOs) quality grade, the scientific community has evidenced some drawbacks in it. In particular, the application of instrumental screening methods to support the panel test could reduce the work of sensory panels and the cost of this analysis (e.g. for industries, distributors, public and private control laboratories), permitting the increase in the number and the efficiency of the controls. On this basis, a research line called “Quantitative Panel Test” is one of the main expected outcomes of the OLEUM project that is also partially discussed in this doctoral dissertation. In this framework, analytical activities were carried out, within this PhD project, aimed to develop and validate analytical protocols for the study of the profiles in volatile compounds (VOCs) of the VOOs headspace. Specifically, two chromatographic approaches, one targeted and one semi-targeted, to determine VOCs were investigated in this doctoral thesis. The obtained results, will allow the possible establishment of concentration limits and ranges of selected volatile markers, as related to fruitiness and defects, with the aim to support the panel test in the commercial categorization of VOOs. In parallel, a rapid instrumental screening method based on the analysis of VOCs has been investigated to assist the panel test through a fast pre-classification of VOOs samples based on a known level of probability, thus increasing the efficiency of quality control.
Resumo:
To address the request to develop rapid and easy methods for determining the cannabinoids, an HPLC-UV method (8 min) to separate and quantify the 10 main cannabinoids in hemp inflorescences was developed, and in-house validated. Moreover, the antioxidant activity of cannabidiol (CBD) in two oily matrices was investigated and compared to that of α-tocopherol, in relation to the growing market of oily solutions containing cannabidiol. Then, since no univocal legislation on the evaluation of quality and authenticity of hemp seed oil (HSO) exists, the composition and quality of cold-pressed HSOs were also explored, highlighting a great variability in terms of oxidative state minor compounds content. From the sensory point of view, a panel was trained, a specific sensory wheel and a profile sheet were developed. Due to the Covid-19 pandemic, the sensory evaluation was also performed at home. The panel showed a good performance both in the laboratory and remotely. Moreover, a focus group was used to investigate consumers’ attitudes, pointing out that a high-quality HSO has to be cold-pressed and green for them. Then, the evaluation of stability during the storage of HSOs was investigated. The results showed that photo-oxidation did not seem to significantly affect the quality of the oil during the first 3 months of storage. Finally, a study about the evolution of the volatile profile of 9 HSOs, under accelerated oxidation conditions, allowed identifying volatile markers of HSOs oxidation and freshness. This Ph.D. was developed in the context of the scholarship “Harmonized procedures of analysis of medical, herbal, food and industrial cannabis: development and validation of cannabinoids’ quality control methods, of extraction and preparation of derivatives from the plant raw material, according to the product destination” funded by Enecta S.r.l.
Resumo:
Sensory analysis is a scientific discipline used to evoke, measure, analyse and interpret the responses to products that are perceived by the senses of sight, smell, taste, touch and hearing. This science is used to highlight the strengths and characteristics of a product, such as in the case of research and development products where alternative ingredients, food waste or by-products are used. It can also be used to evaluate the same characteristics over time, to highlight alterations in one of the sensory components at a given time or over time. This doctoral thesis deals with the valorisation, through characterisation, of various aquaculture fish products. In particular, the products covered by this study were analysed, depending on the objective pursued, with different sensory methods using trained judges and in one case consumers. Therefore, the sensory characterisation of the products was useful for investigating the foods considered in this doctoral research. In particular, specific research topics were taken: 1. The study of alternative ingredients, such as the outcomes of different levels of inclusion of insect larvae (Hermetia illucens) meal on the quality of sea bream (Sparus aurata) fillets. 2. The study of consumer expectations and perceptions on the use of insect meal as a feed for aquaculture products. In particular, this study was done after the characterisation by Quantitative Descriptive analysis (QDA) of the products to exclude sensory differences. 3. Development of a non-destructive and cheap device based on dielectric spectroscopy for assessing fish freshness. In particular in this study, the developed device was evaluated in correlation with a sensory method for assessing the freshness of fish product, the Quality Index Method (QIM)