9 resultados para sensori, embedded, raspberry, bluetooth, android
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
Con questo lavoro di tesi si è cercato da un lato di dare un contributo al settore dei sensori chimici, caratterizzando e sviluppando diversi sistemi che presentano promettenti proprietà per l’utilizzo nella realizzazione di sensori luminescenti, e dall’altro di studiare sistemi di nanoparticelle di oro per identificarne e caratterizzarne i processi che portano all’interazione con un’unità fluorescente di riferimento, il pirene. Quest’ultima parte della tesi, sviluppata nel capitolo 4, sebbene possa apparire “slegata” dall’ambito della sensoristica, in realtà non lo è in quanto il lavoro di ricerca svolto rappresenta una buona base di partenza per lo sviluppo di sistemi di nanoparticelle metalliche con un possibile impiego in campo biomedico e diagnostico. Tutte le specie studiate, seppur molto diverse tra loro, posseggono quindi buone caratteristiche di luminescenza ed interessanti capacità di riconoscimento, più o meno selettivo, di specie in soluzione o allo stato gassoso. L’approccio generale che è stato adottato comporta una iniziale caratterizzazione in soluzione ed una susseguente ottimizzazione del sistema mirata a passare al fissaggio su supporti solidi in vista di possibili applicazioni pratiche. A tal proposito, nel capitolo 3 è stato possibile ottenere un monostrato organico costituito da un recettore (un cavitando), dotato di una parte fluorescente le cui proprietà di luminescenza sono sensibili alla presenza di una funzione chimica che caratterizza una classe di analiti, gli alcoli. E’ interessante sottolineare come lo stesso sistema in soluzione si comporti in maniera sostanzialmente differente, mostrando una capacità di segnalare l’analita molto meno efficiente, anche in funzione di una diversa orientazione della parte fluorescente. All’interfaccia solido-gas invece, l’orientamento del fluoroforo gioca un ruolo chiave nel processo di riconoscimento, e ottimizzando ulteriormente il setup sperimentale e la composizione dello strato, sarà possibile arrivare a segnalare quantità di analita sempre più basse. Nel capitolo 5 invece, è stato preso in esame un sistema le cui potenzialità, per un utilizzo come sonda fluorescente nel campo delle superfici di silicio, sembra promettere molto bene. A tal proposito sono stati discussi anche i risultati del lavoro che ha fornito l’idea per la concezione di questo sistema che, a breve, verrà implementato a sua volta su superficie solida. In conclusione, le ricerche descritte in questa tesi hanno quindi contribuito allo sviluppo di nuovi chemosensori, cercando di migliorare sia le proprietà fotofisiche dell’unità attiva, sia quelle dell’unità recettrice, sia, infine, l’efficienza del processo di traduzione del segnale. I risultati ottenuti hanno inoltre permesso di realizzare alcuni prototipi di dispositivi sensoriali aventi caratteristiche molto promettenti e di ottenere informazioni utili per la progettazione di nuovi dispositivi (ora in fase di sviluppo nei laboratori di ricerca) sempre più efficienti, rispondendo in tal modo alle aspettative con cui questo lavoro di dottorato era stato intrapreso.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
The new generation of multicore processors opens new perspectives for the design of embedded systems. Multiprocessing, however, poses new challenges to the scheduling of real-time applications, in which the ever-increasing computational demands are constantly flanked by the need of meeting critical time constraints. Many research works have contributed to this field introducing new advanced scheduling algorithms. However, despite many of these works have solidly demonstrated their effectiveness, the actual support for multiprocessor real-time scheduling offered by current operating systems is still very limited. This dissertation deals with implementative aspects of real-time schedulers in modern embedded multiprocessor systems. The first contribution is represented by an open-source scheduling framework, which is capable of realizing complex multiprocessor scheduling policies, such as G-EDF, on conventional operating systems exploiting only their native scheduler from user-space. A set of experimental evaluations compare the proposed solution to other research projects that pursue the same goals by means of kernel modifications, highlighting comparable scheduling performances. The principles that underpin the operation of the framework, originally designed for symmetric multiprocessors, have been further extended first to asymmetric ones, which are subjected to major restrictions such as the lack of support for task migrations, and later to re-programmable hardware architectures (FPGAs). In the latter case, this work introduces a scheduling accelerator, which offloads most of the scheduling operations to the hardware and exhibits extremely low scheduling jitter. The realization of a portable scheduling framework presented many interesting software challenges. One of these has been represented by timekeeping. In this regard, a further contribution is represented by a novel data structure, called addressable binary heap (ABH). Such ABH, which is conceptually a pointer-based implementation of a binary heap, shows very interesting average and worst-case performances when addressing the problem of tick-less timekeeping of high-resolution timers.
Resumo:
La neuroriabilitazione è un processo attraverso cui individui affetti da patologie neurologiche mirano al conseguimento di un recupero completo o alla realizzazione del loro potenziale ottimale benessere fisico, mentale e sociale. Elementi essenziali per una riabilitazione efficace sono: una valutazione clinica da parte di un team multidisciplinare, un programma riabilitativo mirato e la valutazione dei risultati conseguiti mediante misure scientifiche e clinicamente appropriate. Obiettivo principale di questa tesi è stato sviluppare metodi e strumenti quantitativi per il trattamento e la valutazione motoria di pazienti neurologici. I trattamenti riabilitativi convenzionali richiedono a pazienti neurologici l’esecuzione di esercizi ripetitivi, diminuendo la loro motivazione. La realtà virtuale e i feedback sono in grado di coinvolgerli nel trattamento, permettendo ripetibilità e standardizzazione dei protocolli. È stato sviluppato e valutato uno strumento basato su feedback aumentati per il controllo del tronco. Inoltre, la realtà virtuale permette l’individualizzare il trattamento in base alle esigenze del paziente. Un’applicazione virtuale per la riabilitazione del cammino è stata sviluppata e testata durante un training su pazienti di sclerosi multipla, valutandone fattibilità e accettazione e dimostrando l'efficacia del trattamento. La valutazione quantitativa delle capacità motorie dei pazienti viene effettuata utilizzando sistemi di motion capture. Essendo il loro uso nella pratica clinica limitato, una metodologia per valutare l’oscillazione delle braccia in soggetti parkinsoniani basata su sensori inerziali è stata proposta. Questi sono piccoli, accurati e flessibili ma accumulano errori durante lunghe misurazioni. È stato affrontato questo problema e i risultati suggeriscono che, se il sensore è sul piede e le accelerazioni sono integrate iniziando dalla fase di mid stance, l’errore e le sue conseguenze nella determinazione dei parametri spaziali sono contenuti. Infine, è stata presentata una validazione del Kinect per il tracking del cammino in ambiente virtuale. Risultati preliminari consentono di definire il campo di utilizzo del sensore in riabilitazione.
Resumo:
Modern embedded systems embrace many-core shared-memory designs. Due to constrained power and area budgets, most of them feature software-managed scratchpad memories instead of data caches to increase the data locality. It is therefore programmers’ responsibility to explicitly manage the memory transfers, and this make programming these platform cumbersome. Moreover, complex modern applications must be adequately parallelized before they can the parallel potential of the platform into actual performance. To support this, programming languages were proposed, which work at a high level of abstraction, and rely on a runtime whose cost hinders performance, especially in embedded systems, where resources and power budget are constrained. This dissertation explores the applicability of the shared-memory paradigm on modern many-core systems, focusing on the ease-of-programming. It focuses on OpenMP, the de-facto standard for shared memory programming. In a first part, the cost of algorithms for synchronization and data partitioning are analyzed, and they are adapted to modern embedded many-cores. Then, the original design of an OpenMP runtime library is presented, which supports complex forms of parallelism such as multi-level and irregular parallelism. In the second part of the thesis, the focus is on heterogeneous systems, where hardware accelerators are coupled to (many-)cores to implement key functional kernels with orders-of-magnitude of speedup and energy efficiency compared to the “pure software” version. However, three main issues rise, namely i) platform design complexity, ii) architectural scalability and iii) programmability. To tackle them, a template for a generic hardware processing unit (HWPU) is proposed, which share the memory banks with cores, and the template for a scalable architecture is shown, which integrates them through the shared-memory system. Then, a full software stack and toolchain are developed to support platform design and to let programmers exploiting the accelerators of the platform. The OpenMP frontend is extended to interact with it.