6 resultados para sensor-based control

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite several clinical tests that have been developed to qualitatively describe complex motor tasks by functional testing, these methods often depend on clinicians' interpretation, experience and training, which make the assessment results inconsistent, without the precision required to objectively assess the effect of the rehabilitative intervention. A more detailed characterization is required to fully capture the various aspects of motor control and performance during complex movements of lower and upper limbs. The need for cost-effective and clinically applicable instrumented tests would enable quantitative assessment of performance on a subject-specific basis, overcoming the limitations due to the lack of objectiveness related to individual judgment, and possibly disclosing subtle alterations that are not clearly visible to the observer. Postural motion measurements at additional locations, such as lower and upper limbs and trunk, may be necessary in order to obtain information about the inter-segmental coordination during different functional tests involved in clinical practice. With these considerations in mind, this Thesis aims: i) to suggest a novel quantitative assessment tool for the kinematics and dynamics evaluation of a multi-link kinematic chain during several functional motor tasks (i.e. squat, sit-to-stand, postural sway), using one single-axis accelerometer per segment, ii) to present a novel quantitative technique for the upper limb joint kinematics estimation, considering a 3-link kinematic chain during the Fugl-Meyer Motor Assessment and using one inertial measurement unit per segment. The suggested methods could have several positive feedbacks from clinical practice. The use of objective biomechanical measurements, provided by inertial sensor-based technique, may help clinicians to: i) objectively track changes in motor ability, ii) provide timely feedback about the effectiveness of administered rehabilitation interventions, iii) enable intervention strategies to be modified or changed if found to be ineffective, and iv) speed up the experimental sessions when several subjects are asked to perform different functional tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Falls are caused by complex interaction between multiple risk factors which may be modified by age, disease and environment. A variety of methods and tools for fall risk assessment have been proposed, but none of which is universally accepted. Existing tools are generally not capable of providing a quantitative predictive assessment of fall risk. The need for objective, cost-effective and clinically applicable methods would enable quantitative assessment of fall risk on a subject-specific basis. Tracking objectively falls risk could provide timely feedback about the effectiveness of administered interventions enabling intervention strategies to be modified or changed if found to be ineffective. Moreover, some of the fundamental factors leading to falls and what actually happens during a fall remain unclear. Objectively documented and measured falls are needed to improve knowledge of fall in order to develop more effective prevention strategies and prolong independent living. In the last decade, several research groups have developed sensor-based automatic or semi-automatic fall risk assessment tools using wearable inertial sensors. This approach may also serve to detect falls. At the moment, i) several fall-risk assessment studies based on inertial sensors, even if promising, lack of a biomechanical model-based approach which could provide accurate and more detailed measurements of interests (e.g., joint moments, forces) and ii) the number of published real-world fall data of older people in a real-world environment is minimal since most authors have used simulations with healthy volunteers as a surrogate for real-world falls. With these limitations in mind, this thesis aims i) to suggest a novel method for the kinematics and dynamics evaluation of functional motor tasks, often used in clinics for the fall-risk evaluation, through a body sensor network and a biomechanical approach and ii) to define the guidelines for a fall detection algorithm based on a real-world fall database availability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

in the everyday clinical practice. Having this in mind, the choice of a simple setup would not be enough because, even if the setup is quick and simple, the instrumental assessment would still be in addition to the daily routine. The will to overcome this limit has led to the idea of instrumenting already existing and widely used functional tests. In this way the sensor based assessment becomes an integral part of the clinical assessment. Reliable and validated signal processing methods have been successfully implemented in Personal Health Systems based on smartphone technology. At the end of this research project there is evidence that such solution can really and easily used in clinical practice in both supervised and unsupervised settings. Smartphone based solution, together or in place of dedicated wearable sensing units, can truly become a pervasive and low-cost means for providing suitable testing solutions for quantitative movement analysis with a clear clinical value, ultimately providing enhanced balance and mobility support to an aging population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduzione. Il rapido e globale incremento dell’utilizzo dei telefoni cellulari da parte degli adolescenti e dei bambini ha generato un considerevole interesse circa i possibili effetti sulla salute dell’esposizione a campi elettromagnetici a radiofrequenza. Perciò è stato avviato lo studio internazionale caso-controllo Mobi-kids, all’interno del quale si colloca quello italiano condotto in 4 Regioni (Piemonte, Lombardia, Toscana, Emilia-Romagna). Obiettivi. Lo studio ha come obiettivo quello di valutare la stima del rischio degli effetti potenzialmente avversi di queste esposizioni sul sistema nervoso centrale nei bambini e negli adolescenti. Materiali e Metodi. La popolazione include tutte le persone di età compresa tra 10 e 24 anni residenti nelle 4 Regioni, con una diagnosi confermata di neoplasia cerebrale primitiva, diagnosticata durante il periodo di studio (3 anni). Sono stati selezionati due controlli - ospedalizzati per appendicite acuta - per ciascun caso. I controlli sono stati appaiati individualmente a ciascun caso per età, sesso e residenza del caso. Risultati. In Italia sono stati intervistati a Giugno 2014, 106 casi e 191 controlli. In Emilia-Romagna i casi reclutati sono stati fino ad ora 21 e i controlli 20, con una rispondenza del’81% e dell’65% rispettivamente. Dei 41 soggetti totali, il 61% era di sesso maschile con un’età media generale pari a 16,5 (±4,5) anni. Inoltre il 44% degli intervistati proveniva dalla classe di età più giovane (10-14). In merito allo stato di appaiamento, nella nostra Regione sono state effettuate 7 triplette (33%) - 1 caso e 2 controlli - e 6 doppiette (29%) - 1 caso ed 1 controllo. Conclusioni. Nonostante le varie difficoltà affrontate data la natura del progetto, l’esperienza maturata fin ad ora ha comunque portato alla fattibilità dello studio e porterà probabilmente a risultati che contribuiranno alla comprensione dei potenziali rischi di neoplasie cerebrali associati all'uso di telefoni cellulari tra i giovani.