3 resultados para self-similarity

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

I have studied entropy profiles obtained in a sample of 24 X-ray objects at high redshift retrieved from the Chandra archive. I have discussed the scaling properties of the entropy S, the correlation between metallicity Z and S, the profiles of the temperature of the gas, Tgas, and performed a comparison between the dark matter 'temperature' and Tgas in order to constrain the non-gravitational processes which affect the thermal history of the gas. Furthermore I have studied the scaling relations between the X-ray quantities and Sunyaev Zel'dovich measurements. I have observed that X-ray laws are steeper than the relations predicted from the adiabatic model. These deviations from expectations based on self-similarity are usually interpreted in terms of feedback processes leading to non-gravitational gas heating, and suggesting a scenario in which the ICM at higher redshift has lower both X-ray luminosity and pressure in the central regions than the expectations from self-similar model. I have also investigated a Bayesian X-ray and Sunyaev Zel'dovich analysis, which allows to study the external regions of the clusters well beyond the volumes resolved with X-ray observations (1/3-1/2 of the virial radius), to measure the deprojected physical cluster properties, like temperature, density, entropy, gas mass and total mass up to the virial radius.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is the in vivo technique most commonly employed to characterize changes in brain structures. The conventional MRI-derived morphological indices are able to capture only partial aspects of brain structural complexity. Fractal geometry and its most popular index, the fractal dimension (FD), can characterize self-similar structures including grey matter (GM) and white matter (WM). Previous literature shows the need for a definition of the so-called fractal scaling window, within which each structure manifests self-similarity. This justifies the existence of fractal properties and confirms Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere". In this work, we propose a new approach to automatically determine the fractal scaling window, computing two new fractal descriptors, i.e., the minimal and maximal fractal scales (mfs and Mfs). Our method was implemented in a software package, validated on phantoms and applied on large datasets of structural MR images. We demonstrated that the FD is a useful marker of morphological complexity changes that occurred during brain development and aging and, using ultra-high magnetic field (7T) examinations, we showed that the cerebral GM has fractal properties also below the spatial scale of 1 mm. We applied our methodology in two neurological diseases. We observed the reduction of the brain structural complexity in SCA2 patients and, using a machine learning approach, proved that the cerebral WM FD is a consistent feature in predicting cognitive decline in patients with small vessel disease and mild cognitive impairment. Finally, we showed that the FD of the WM skeletons derived from diffusion MRI provides complementary information to those obtained from the FD of the WM general structure in T1-weighted images. In conclusion, the fractal descriptors of structural brain complexity are candidate biomarkers to detect subtle morphological changes during development, aging and in neurological diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nello sport di alto livello l’uso della tecnologia ha raggiunto un ruolo di notevole importanza per l’analisi e la valutazione della prestazione. Negli ultimi anni sono emerse nuove tecnologie e sono migliorate quelle pre-esistenti (i.e. accelerometri, giroscopi e software per l’analisi video) in termini di campionamento, acquisizione dati, dimensione dei sensori che ha permesso la loro “indossabilità” e l’inserimento degli stessi all’interno degli attrezzi sportivi. La tecnologia è sempre stata al servizio degli atleti come strumento di supporto per raggiungere l’apice dei risultati sportivi. Per questo motivo la valutazione funzionale dell’atleta associata all’uso di tecnologie si pone lo scopo di valutare i miglioramenti degli atleti misurando la condizione fisica e/o la competenza tecnica di una determinata disciplina sportiva. L’obiettivo di questa tesi è studiare l’utilizzo delle applicazioni tecnologiche e individuare nuovi metodi di valutazione della performance in alcuni sport acquatici. La prima parte (capitoli 1-5), si concentra sulla tecnologia prototipale chiamata E-kayak e le varie applicazioni nel kayak di velocità. In questi lavori è stata verificata l’attendibilità dei dati forniti dal sistema E-kayak con i sistemi presenti in letteratura. Inoltre, sono stati indagati nuovi parametri utili a comprendere il modello di prestazione del paddler. La seconda parte (capitolo 6), si riferisce all’analisi cinematica della spinta verticale del pallanuotista, attraverso l’utilizzo della video analisi 2D, per l’individuazione delle relazioni Forza-velocità e Potenza-velocità direttamente in acqua. Questo studio pilota, potrà fornire indicazioni utili al monitoraggio e condizionamento di forza e potenza da svolgere direttamente in acqua. Infine la terza parte (capitoli 7-8), si focalizza sull’individuazione della sequenza di Fibonacci (sequenza divina) nel nuoto a stile libero e a farfalla. I risultati di questi studi suggeriscono che il ritmo di nuotata tenuto durante le medie/lunghe distanze gioca un ruolo chiave. Inoltre, il livello di autosomiglianza (self-similarity) aumenta con la tecnica del nuoto.