5 resultados para selective control

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological complexity of NGF action is achieved by binding two distinct Neurotrophin receptors, TrkA and p75NTR. While several reports have provided lines of evidence on the interaction between TrkA and p75NTR at the plasma membrane, much fewer data are available on the consequence of such an interaction in terms of intracellular signaling. In this study, we have focused on how p75NTR may affect TrkA downstream signaling with respect to neuronal differentiation. Here, we have shown that cooperation between p75NTR and TrkA results in an increased NGF-mediated TrkA autophosphorylation, leads to a sustained activation of ERK1/2 and accelerates neurite outgrowth. Interestingly, neurite outgrowth is concomitant with a selective enhancement of the AP-1 activity and the transcriptional activation of genes such as GAP-43 and p21(CIP/WAF), known to be involved in the differentiation process. Collectively, our results unveil a functional link between the specific expression profile of neurotrophin receptors in neuronal cells and the NGF-mediated regulation of the differentiation process possibly through a persistent ERKs activation and the selective control of the AP-1 activity. In our studies we discuss the functional role of the neurotrophin receptor p75NTR and TrkA in a ligand-dependent signal transduction. It is known that p75NTR is also involved in the mediation of cell death ligand dependent. Here we show for the first time that the membrane receptor p75NTR, upon binding to b- Amyloid (Ab) peptide, is able to transduce a cytotoxic signal through a mechanism very similar to the one adopted by Tumor Necrosis Factor Receptor 1 (TNFR1), when activated by TNFa. We define that in neuroblastoma cell line Ab cytotoxicity signals through a pathway depending on p75NTR death domain (DD), mostly through some specific conserved residues. We identified that TRADD is the first interactor recruiting to the membrane and activates JNK and NF-kB transcription factors. Since Ab is defined as the most important aetiologic element associated with the Alzheimer’s Disease (AD), characterization of the mechanism involved in the mediation of the neurodegeneration can suggest also new therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug addiction manifests clinically as compulsive drug seeking, and cravings that can persist and recur even after extended periods of abstinence. The fundamental principle that unites addictive drugs is that each one enhances synaptic DA by means that dissociate it from normal behavioral control, so that they act to reinforce their own acquisition. Our attention has focused on the study of phenomena associated with the consumption of alcohol and heroin. Alcohol has long been considered an unspecific pharmacological agent, recent molecular pharmacology studies have shown that acts on different primary targets. Through gene expression studies conducted recently it has been shown that the classical opioid receptors are differently involved in the consumption of ethanol and, furthermore, the system nociceptin / NOP, included in the family of endogenous opioid system, and both appear able to play a key role in the initiation of alcohol use in rodents. What emerges is that manipulation of the opioid system, nociceptin, may be useful in the treatment of addictions and there are several evidences that support the use of this strategy. The linkage between gene expression alterations and epigenetic modulation in PDYN and PNOC promoters following alcohol treatment confirm the possible chromatin remodeling mechanism already proposed for alcoholism. In the second part of present study, we also investigated alterations in signaling molecules directly associated with MAPK pathway in a unique collection of postmortem brains from heroin abusers. The interest was focused on understanding the effects that prolonged exposure of heroin can cause in an individual, over the entire MAPK cascade and consequently on the transcription factor ELK1, which is regulated by this pathway. We have shown that the activation of ERK1/2 resulting in Elk-1 phosphorylation in striatal neurons supporting the hypothesis that prolonged exposure to substance abuse causes a dysregulation of MAPK pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.