2 resultados para seeding
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.
Resumo:
Synucleinopathies are a group of neurodegenerative diseases characterized by tissue deposition of insoluble aggregates of the protein α-synuclein. Currently, the clinical diagnosis of these diseases, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), is very challenging, especially at an early disease stage, due to the heterogeneous and often non-specific clinical manifestations. Therefore, identifying specific biomarkers to aid the diagnosis and improve the clinical management of patients with these disorders represents a primary goal in the field. Pursuing this aim, we applied the α-Syn Real-Time Quaking-Induced Conversion (RT-QuIC), an ultrasensitive technique able to detect minute amounts of amyloidogenic proteins, to a large cohort of 953 CSF samples from clinically well-characterized (“clinical” group), or neuropathologically verified (“NP” group) patients with parkinsonism or dementia. Of significance, we also studied patients with prodromal synucleinopathies (“prodromal” group), such as pure autonomic failure (PAF) (n = 28), isolated REM sleep behavior disorder (iRBD) (n = 18), and mild cognitive impairment due to probable Lewy body (LB) disease (MCI-LB) (n = 81). Our findings show that α-syn RT-QuIC can accurately detect α-Syn seeding activity across the whole spectrum of LB-related disorders (LBD), exhibiting a mean sensitivity of 95.2% in the “clinical” and “NP” group, while ranging between 89.3% (PAF) and 100% (RBD) in the “prodromal group”. Moreover, we observed 95.1% sensitivity and 96.6% specificity in the distinction between MCI-LB patients and cognitively unimpaired controls, demonstrating the solid diagnostic potential of α-Syn RT-QuIC in the early phase of the disease. Finally, 13.3% of MCI-AD patients also had a positive test, suggesting an underlying LB co-pathology. This work demonstrated that α-Syn RT-QuIC is an efficient assay for accurate and early diagnosis of LBD, which should be implemented for clinical management and recruitment for clinical trials in memory clinics.