3 resultados para seasons of seeding
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The study of the impact of climate change on the environment has been based, until very recently, on an global approach, whose interest from a local point of view is very limited. This thesis, on the contrary, has treated the study of the impact of climate change in the Adriatic Sea basin following a twofold strategy of regionalization and integration of numerical models in order to reproduce the present and future scenarios of the system through a more and more realistic and solid approach. In particular the focus of the study was on the impact on the physical environment and on the sediment transport in the basin. This latter is a very new and original issue, to our knowledge still uninvestigated. The study case of the coastal area of Montenegro was particularly studied, since it is characterized by an important supply of sediment through the Buna/Bojana river, second most important in the Adriatic basin in terms of flow. To do this, a methodology to introduce the tidal processes in a baroclinic primitive equations Ocean General Circulation Model was applied and tidal processes were successfully reproduced in the Adriatic Sea, analyzing also the impacts they have on the mean general circulation, on salt and heat transport and on mixing and stratification of the water column in the different seasons of the year. The new hydrodynamical model has been further coupled with a wave model and with a river and sea sediment transport model, showing good results in the reproduction of sediment transport processes. Finally this complex coupled platform was integrated in the period 2001-2030 under the A1B scenario of IPCC, and the impact of climate change on the physical system and on sediment transport was preliminarily evaluated.
Resumo:
Two Asian longhorned beetles (Coleoptera: Cerambycidae), commonly known as Citrus Longhorned Beetle (CLB), Anoplophora chinensis (Forster), and Asian Longhorned Beetle (ALB), A. glabripennis (Motschulsky), are considered the most destructive wood borers introduced in Lombardy (northern Italy). This research aimed at (1) improving laboratory rearing methods for the biological control agent Aprostocetus anoplophorae (Hym.: Eulophidae), an egg parasitoid specific to CLB, and defining release techniques allowing its establishment; (2) test the efficacy of the sentinel tree technique for the early detection of CLB; and (3) evaluating the efficacy of traps baited with artificial lures in attracting adults of ALB and possibly CLB. Several problems were faced while rearing the egg parasitoid in laboratory. It appeared that the rate of parasitism of the hosts could depend on the age of the host eggs and/or age of the laying parasitoid females. Data results from the field experiments about A. anoplophorae release-capture showed that the percentage of slits containing a CLB egg was particularly low on most sentinel trees and the percentage of CLB eggs that were killed, because of natural predators, was high. Only one egg amongst those exposed was attacked by the released parasitoid. These negative results were anyway very useful, since they provided evidence and information on the type of host plants to be used, the time necessary for the exposure of the plants to the egg-laying CLB females, the number of laying parasitoid females to be inserted per cage. The sentinel trees technique revealed to be not successful; signs and symptoms of CLB presence were not recorded during the two seasons of field observations (2012-2013). Extremely positive was instead the trial with artificial lures carried out during summer 2013. A total of 32 beetles were captured (4 ALB and 28 CLB) deploying 50 baited traps.
Resumo:
Stem cells are one of the most fascinating areas of biology today, and since the discover of an adult population, i.e., adult Stem Cells (aSCs), they have generated much interest especially for their application potential as a source for cell based regenerative medicine and tissue engineering. aSCs have been found in different tissues including bone marrow, skin, intestine, central nervous system, where they reside in a special microenviroment termed “niche” which regulate the homeostasis and repair of adult tissues. The arterial wall of the blood vessels is much more plastic than ever before believed. Several animal studies have demonstrated the presence of cells with stem cell characteristics within the adult vessels. Recently, it has been also hypothesized the presence of a “vasculogenic zone” in human adult arteries in which a complete hierarchy of resident stem cells and progenitors could be niched during lifetime. Accordingly, it can be speculated that in that location resident mesenchymal stem cells (MSCs) with the ability to differentiate in smooth muscle cells, surrounding pericytes and fibroblasts are present. The present research was aimed at identifying in situ and isolating MSCs from thoracic aortas of young and healthy heart-beating multiorgan donors. Immunohistochemistry performed on fresh and frozen human thoracic aortas demonstrated the presence of the vasculogenic zone between the media and the adventitial layers in which a well preserved plexus of CD34 positive cells was found. These cells expressed intensely HLA-I antigens both before and after cryopreservation and after 4 days of organ cultures remained viable. Following these preliminary results, we succeeded to isolate mesenchymal cells from multi-organ thoracic aortas using a mechanical and enzymatic combined procedure. Cells had phenotypic characteristics of MSC i.e., CD44+, CD90+, CD105+, CD166+, CD34low, CD45- and revealed a transcript expression of stem cell markers, e.g., OCT4, c-kit, BCRP-1, IL6 and BMI-1. As previously documented using bone marrow derived MSCs, resident vascular wall MSCs were able to differentiate in vitro into endothelial cells in the presence of low-serum supplemented with VEGF-A (50 ng/ml) for 7 days. Under the condition described above, cultured cells showed an increased expression of KDR and eNOS, down-regulation of the CD133 transcript, vWF expression as documented by flow cytometry, immunofluorescence, qPCR and TEM. Moreover, matrigel assay revealed that VEGF induced cells were able to form capillary-like structures within 6 hours of seeding. In summary, these findings indicate that thoracic aortas from heart-beating, multi-organ donors are highly suitable for obtaining MSCs with the ability to differentiate in vitro into endothelial cells. Even though their differentiating potential remains to be fully established, it is believed that their angiogenic ability could be a useful property for allogenic use. These cells can be expanded rapidly, providing numbers which are adequate for therapeutic neovascularization; furthermore they can be cryostored in appropriate cell banking facilities for later use.