4 resultados para scale efficiency

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable electronic systems, namely a set of reliable electronic devices connected to each other and working correctly together for the same functionality, represent an essential ingredient for the large-scale commercial implementation of any technological advancement. Microelectronics technologies and new powerful integrated circuits provide noticeable improvements in performance and cost-effectiveness, and allow introducing electronic systems in increasingly diversified contexts. On the other hand, opening of new fields of application leads to new, unexplored reliability issues. The development of semiconductor device and electrical models (such as the well known SPICE models) able to describe the electrical behavior of devices and circuits, is a useful means to simulate and analyze the functionality of new electronic architectures and new technologies. Moreover, it represents an effective way to point out the reliability issues due to the employment of advanced electronic systems in new application contexts. In this thesis modeling and design of both advanced reliable circuits for general-purpose applications and devices for energy efficiency are considered. More in details, the following activities have been carried out: first, reliability issues in terms of security of standard communication protocols in wireless sensor networks are discussed. A new communication protocol is introduced, allows increasing the network security. Second, a novel scheme for the on-die measurement of either clock jitter or process parameter variations is proposed. The developed scheme can be used for an evaluation of both jitter and process parameter variations at low costs. Then, reliability issues in the field of “energy scavenging systems” have been analyzed. An accurate analysis and modeling of the effects of faults affecting circuit for energy harvesting from mechanical vibrations is performed. Finally, the problem of modeling the electrical and thermal behavior of photovoltaic (PV) cells under hot-spot condition is addressed with the development of an electrical and thermal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Tesi analizza le relazioni tra i processi di sviluppo agricolo e l’uso delle risorse naturali, in particolare di quelle energetiche, a livello internazionale (paesi in via di sviluppo e sviluppati), nazionale (Italia), regionale (Emilia Romagna) e aziendale, con lo scopo di valutare l’eco-efficienza dei processi di sviluppo agricolo, la sua evoluzione nel tempo e le principali dinamiche in relazione anche ai problemi di dipendenza dalle risorse fossili, della sicurezza alimentare, della sostituzione tra superfici agricole dedicate all’alimentazione umana ed animale. Per i due casi studio a livello macroeconomico è stata adottata la metodologia denominata “SUMMA” SUstainability Multi-method, multi-scale Assessment (Ulgiati et al., 2006), che integra una serie di categorie d’impatto dell’analisi del ciclo di vita, LCA, valutazioni costi-benefici e la prospettiva di analisi globale della contabilità emergetica. L’analisi su larga scala è stata ulteriormente arricchita da un caso studio sulla scala locale, di una fattoria produttrice di latte e di energia elettrica rinnovabile (fotovoltaico e biogas). Lo studio condotto mediante LCA e valutazione contingente ha valutato gli effetti ambientali, economici e sociali di scenari di riduzione della dipendenza dalle fonti fossili. I casi studio a livello macroeconomico dimostrano che, nonostante le politiche di supporto all’aumento di efficienza e a forme di produzione “verdi”, l’agricoltura a livello globale continua ad evolvere con un aumento della sua dipendenza dalle fonti energetiche fossili. I primi effetti delle politiche agricole comunitarie verso una maggiore sostenibilità sembrano tuttavia intravedersi per i Paesi Europei. Nel complesso la energy footprint si mantiene alta poiché la meccanizzazione continua dei processi agricoli deve necessariamente attingere da fonti energetiche sostitutive al lavoro umano. Le terre agricole diminuiscono nei paesi europei analizzati e in Italia aumentando i rischi d’insicurezza alimentare giacché la popolazione nazionale sta invece aumentando.