8 resultados para sampling error
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Several MCAO systems are under study to improve the angular resolution of the current and of the future generation large ground-based telescopes (diameters in the 8-40 m range). The subject of this PhD Thesis is embedded in this context. Two MCAO systems, in dierent realization phases, are addressed in this Thesis: NIRVANA, the 'double' MCAO system designed for one of the interferometric instruments of LBT, is in the integration and testing phase; MAORY, the future E-ELT MCAO module, is under preliminary study. These two systems takle the sky coverage problem in two dierent ways. The layer oriented approach of NIRVANA, coupled with multi-pyramids wavefront sensors, takes advantage of the optical co-addition of the signal coming from up to 12 NGS in a annular 2' to 6' technical FoV and up to 8 in the central 2' FoV. Summing the light coming from many natural sources permits to increase the limiting magnitude of the single NGS and to improve considerably the sky coverage. One of the two Wavefront Sensors for the mid- high altitude atmosphere analysis has been integrated and tested as a stand- alone unit in the laboratory at INAF-Osservatorio Astronomico di Bologna and afterwards delivered to the MPIA laboratories in Heidelberg, where was integrated and aligned to the post-focal optical relay of one LINC-NIRVANA arm. A number of tests were performed in order to characterize and optimize the system functionalities and performance. A report about this work is presented in Chapter 2. In the MAORY case, to ensure correction uniformity and sky coverage, the LGS-based approach is the current baseline. However, since the Sodium layer is approximately 10 km thick, the articial reference source looks elongated, especially when observed from the edge of a large aperture. On a 30-40 m class telescope, for instance, the maximum elongation varies between few arcsec and 10 arcsec, depending on the actual telescope diameter, on the Sodium layer properties and on the laser launcher position. The centroiding error in a Shack-Hartmann WFS increases proportionally to the elongation (in a photon noise dominated regime), strongly limiting the performance. To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of Chapter 3 is twofold: an analysis of the performance of three dierent algorithms (Weighted Center of Gravity, Correlation and Quad-cell) for the instantaneous LGS image position measurement in presence of elongated spots and the determination of the required number of photons to achieve a certain average wavefront error over the telescope aperture. An alternative optical solution to the spot elongation problem is proposed in Section 3.4. Starting from the considerations presented in Chapter 3, a first order analysis of the LGS WFS for MAORY (number of subapertures, number of detected photons per subaperture, RON, focal plane sampling, subaperture FoV) is the subject of Chapter 4. An LGS WFS laboratory prototype was designed to reproduce the relevant aspects of an LGS SH WFS for the E-ELT and to evaluate the performance of different centroid algorithms in presence of elongated spots as investigated numerically and analytically in Chapter 3. This prototype permits to simulate realistic Sodium proles. A full testing plan for the prototype is set in Chapter 4.
Resumo:
Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.
Resumo:
Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.
Resumo:
An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.
Resumo:
In this study a new, fully non-linear, approach to Local Earthquake Tomography is presented. Local Earthquakes Tomography (LET) is a non-linear inversion problem that allows the joint determination of earthquakes parameters and velocity structure from arrival times of waves generated by local sources. Since the early developments of seismic tomography several inversion methods have been developed to solve this problem in a linearized way. In the framework of Monte Carlo sampling, we developed a new code based on the Reversible Jump Markov Chain Monte Carlo sampling method (Rj-McMc). It is a trans-dimensional approach in which the number of unknowns, and thus the model parameterization, is treated as one of the unknowns. I show that our new code allows overcoming major limitations of linearized tomography, opening a new perspective in seismic imaging. Synthetic tests demonstrate that our algorithm is able to produce a robust and reliable tomography without the need to make subjective a-priori assumptions about starting models and parameterization. Moreover it provides a more accurate estimate of uncertainties about the model parameters. Therefore, it is very suitable for investigating the velocity structure in regions that lack of accurate a-priori information. Synthetic tests also reveal that the lack of any regularization constraints allows extracting more information from the observed data and that the velocity structure can be detected also in regions where the density of rays is low and standard linearized codes fails. I also present high-resolution Vp and Vp/Vs models in two widespread investigated regions: the Parkfield segment of the San Andreas Fault (California, USA) and the area around the Alto Tiberina fault (Umbria-Marche, Italy). In both the cases, the models obtained with our code show a substantial improvement in the data fit, if compared with the models obtained from the same data set with the linearized inversion codes.
Resumo:
The aim of this study was to investigate cortisol and progesterone (P4) trends in hair from birth up to postweaning in Italian trotter foals. Hair sampling is non-invasive and hair concentrations provide retrospective information of integrated hormone secretion over periods of several months. Samples were collected at birth and at a distance of 30 days, collecting only regrowth hair, up to post weaning. From birth to 3 months, foals cortisol falls from 47.64±5.6 to 4.9±0.68 pg/mg (mean±standard error), due to the interruption of foetal-placental connection and progressive adaptation to extrauterine life. From the third month of life to post weaning concentrations don’t vary significantly, underlining a non-chronic activation of the HPA axis. Hair P4 significantly decreases in the first two samples (from 469.68±72,54 to 184.65±35.42 pg/mg). At 2 (111.78±37.13 pg/mg) and 3 months (35.96±6.33 pg/mg) hair concentrations don’t show significant differences. These concentrations are not due to interactions of the utero-placental tissues with foals, animals are still prepuberal and P4 isn’t produced by adrenals as a result of high stress. We could therefore hypothesize that the source of foal hair P4 could be milk, suckled from mares. The high individual variability in hair at 2 and 3 months is due to a gradual and subjective change in foal diet, from milk to solid food, and to the fact that mares do not allow to suckle. From fourth month to post weaning P4 concentration in hair remains around 37.56±6.45 pg/mg. In conclusion, hair collected at birth, giving information about last period of gestation, could be used along with traditional matrices, to evaluate foals maturity. Hair cortisol could give indications about foals capacity to adapt to extra-uterine life. Finally milk, configuring as a bringer of nutrients and energy and assuming the characteristic of a nutraceutical, could give fundamental information about parental care.
Resumo:
The uncertainties in the determination of the stratigraphic profile of natural soils is one of the main problems in geotechnics, in particular for landslide characterization and modeling. The study deals with a new approach in geotechnical modeling which relays on a stochastic generation of different soil layers distributions, following a boolean logic – the method has been thus called BoSG (Boolean Stochastic Generation). In this way, it is possible to randomize the presence of a specific material interdigitated in a uniform matrix. In the building of a geotechnical model it is generally common to discard some stratigraphic data in order to simplify the model itself, assuming that the significance of the results of the modeling procedure would not be affected. With the proposed technique it is possible to quantify the error associated with this simplification. Moreover, it could be used to determine the most significant zones where eventual further investigations and surveys would be more effective to build the geotechnical model of the slope. The commercial software FLAC was used for the 2D and 3D geotechnical model. The distribution of the materials was randomized through a specifically coded MatLab program that automatically generates text files, each of them representing a specific soil configuration. Besides, a routine was designed to automate the computation of FLAC with the different data files in order to maximize the sample number. The methodology is applied with reference to a simplified slope in 2D, a simplified slope in 3D and an actual landslide, namely the Mortisa mudslide (Cortina d’Ampezzo, BL, Italy). However, it could be extended to numerous different cases, especially for hydrogeological analysis and landslide stability assessment, in different geological and geomorphological contexts.