8 resultados para river flood model

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydrologic risk (and the hydro-geologic one, closely related to it) is, and has always been, a very relevant issue, due to the severe consequences that may be provoked by a flooding or by waters in general in terms of human and economic losses. Floods are natural phenomena, often catastrophic, and cannot be avoided, but their damages can be reduced if they are predicted sufficiently in advance. For this reason, the flood forecasting plays an essential role in the hydro-geological and hydrological risk prevention. Thanks to the development of sophisticated meteorological, hydrologic and hydraulic models, in recent decades the flood forecasting has made a significant progress, nonetheless, models are imperfect, which means that we are still left with a residual uncertainty on what will actually happen. In this thesis, this type of uncertainty is what will be discussed and analyzed. In operational problems, it is possible to affirm that the ultimate aim of forecasting systems is not to reproduce the river behavior, but this is only a means through which reducing the uncertainty associated to what will happen as a consequence of a precipitation event. In other words, the main objective is to assess whether or not preventive interventions should be adopted and which operational strategy may represent the best option. The main problem for a decision maker is to interpret model results and translate them into an effective intervention strategy. To make this possible, it is necessary to clearly define what is meant by uncertainty, since in the literature confusion is often made on this issue. Therefore, the first objective of this thesis is to clarify this concept, starting with a key question: should be the choice of the intervention strategy to adopt based on the evaluation of the model prediction based on its ability to represent the reality or on the evaluation of what actually will happen on the basis of the information given by the model forecast? Once the previous idea is made unambiguous, the other main concern of this work is to develope a tool that can provide an effective decision support, making possible doing objective and realistic risk evaluations. In particular, such tool should be able to provide an uncertainty assessment as accurate as possible. This means primarily three things: it must be able to correctly combine all the available deterministic forecasts, it must assess the probability distribution of the predicted quantity and it must quantify the flooding probability. Furthermore, given that the time to implement prevention strategies is often limited, the flooding probability will have to be linked to the time of occurrence. For this reason, it is necessary to quantify the flooding probability within a horizon time related to that required to implement the intervention strategy and it is also necessary to assess the probability of the flooding time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this doctoral dissertation, a comprehensive methodological approach for the assessment of river embankments safety conditions, based on the integrated use of laboratory testing, physical modelling and finite element (FE) numerical simulations, is proposed, with the aim of contributing to a better understanding of the effect of time-dependent hydraulic boundary conditions on the hydro-mechanical response of river embankments. The case study and materials selected for the present research project are representative for the riverbank systems of Alpine and Apennine tributaries of the main river Po (Northern Italy), which have recently experienced various sudden overall collapses. The outcomes of a centrifuge test carried out under the enhanced gravity field of 50-g, on a riverbank model, made of a compacted silty sand mixture, overlying a homogeneous clayey silt foundation layer and subjected to a simulated flood event, have been considered for the definition of a robust and realistic experimental benchmark. In order to reproduce the observed experimental behaviour, a first set of numerical simulations has been carried out by assuming, for both the embankments and the foundation unit, rigid soil porous media, under partially saturated conditions. Mechanical and hydraulic soil properties adopted in the numerical analyses have been carefully estimated based on standard saturated triaxial, oedometer and constant head permeability tests. Afterwards, advanced suction-controlled laboratory tests, have been carried out to investigate the effect of suction and confining stresses on the shear strength and compressibility characteristics of the filling material and a second set of numerical simulations has been run, taking into account the soil parameters updated based on the most recent tests. The final aim of the study is the quantitative estimation of the predictive capabilities of the calibrated numerical tools, by systematically comparing the results of the FE simulations to the experimental benchmark.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many efforts have been devoting since last years to reduce uncertainty in hydrological modeling predictions. The principal sources of uncertainty are provided by input errors, for inaccurate rainfall prediction, and model errors, given by the approximation with which the water flow processes in the soil and river discharges are described. The aim of the present work is to develop a bayesian model in order to reduce the uncertainty in the discharge predictions for the Reno river. The ’a priori’ distribution function is given by an autoregressive model, while the likelihood function is provided by a linear equation which relates observed values of discharge in the past and hydrological TOPKAPI model predictions obtained by the rainfall predictions of the limited-area model COSMO-LAMI. The ’a posteriori’ estimations are provided throw a H∞ filter, because the statistical properties of estimation errors are not known. In this work a stationary and a dual adaptive filter are implemented and compared. Statistical analysis of estimation errors and the description of three case studies of flood events occurred during the fall seasons from 2003 to 2005 are reported. Results have also revealed that errors can be described as a markovian process only at a first approximation. For the same period, an ensemble of ’a posteriori’ estimations is obtained throw the COSMO-LEPS rainfall predictions, but the spread of this ’a posteriori’ ensemble is not enable to encompass observation variability. This fact is related to the building of the meteorological ensemble, whose spread reaches its maximum after 5 days. In the future the use of a new ensemble, COSMO–SREPS, focused on the first 3 days, could be helpful to enlarge the meteorogical and, consequently, the hydrological variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research has focused on the study of the behavior and of the collapse of masonry arch bridges. The latest decades have seen an increasing interest in this structural type, that is still present and in use, despite the passage of time and the variation of the transport means. Several strategies have been developed during the time to simulate the response of this type of structures, although even today there is no generally accepted standard one for assessment of masonry arch bridges. The aim of this thesis is to compare the principal analytical and numerical methods existing in literature on case studies, trying to highlight values and weaknesses. The methods taken in exam are mainly three: i) the Thrust Line Analysis Method; ii) the Mechanism Method; iii) the Finite Element Methods. The Thrust Line Analysis Method and the Mechanism Method are analytical methods and derived from two of the fundamental theorems of the Plastic Analysis, while the Finite Element Method is a numerical method, that uses different strategies of discretization to analyze the structure. Every method is applied to the case study through computer-based representations, that allow a friendly-use application of the principles explained. A particular closed-form approach based on an elasto-plastic material model and developed by some Belgian researchers is also studied. To compare the three methods, two different case study have been analyzed: i) a generic masonry arch bridge with a single span; ii) a real masonry arch bridge, the Clemente Bridge, built on Savio River in Cesena. In the analyses performed, all the models are two-dimensional in order to have results comparable between the different methods taken in exam. The different methods have been compared with each other in terms of collapse load and of hinge positions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Comunità Europea, alla luce dei recenti eventi alluvionali occorsi nei Paesi Membri ed al progressivo aumento dei danni economici da essi provocati, ha recentemente emanato una direttiva (Direttiva Europea 2007/60/CE, Flood Directive) per la valutazione e la predisposizione di piani di gestione del rischio idraulico alluvionale. Con riferimento a tale contesto l’attività di ricerca condotta si è concentrata sulla valutazione delle potenzialità offerte dalla modellistica numerico-idraulica mono e bidimensionale quale strumento per l’attuazione della Direttiva 2007/60. Le attività sono state affrontate ponendo particolare attenzione alla valutazione dei termini di incertezza che caratterizzano l’applicazione dei modelli numerico-idraulici, esaminando i possibili effetti di tale incertezza sulla mappatura della pericolosità idraulica. In particolare, lo studio si concentra su diversi tratti fluviali del corso medio inferiore del Fiume Po e si articola in tre parti: 1) analisi dell’incertezza connessa alla definizione delle scale di deflusso in una generica sezione fluviale e valutazione dei suoi effetti sulla calibrazione dei modelli numerici quasi-bidimensionali (quasi-2D); 2) definizione di mappe probabilistiche di allagamento per tratti fluviali arginati in presenza di tre sorgenti di incertezza: incertezza nelle condizioni al contorno di monte, nelle condizioni di valle e nell’identificazione delle eventuali brecce arginali; 3) valutazione dell’applicabilità di un modello quasi-2D per la definizione, a grande scala spaziale, di strategie alternative al tradizionale rialzo dei manufatti arginali per la mitigazione del rischio alluvionale associato a eventi di piena catastrofici. Le analisi condotte, oltre ad aver definito e valutato le potenzialità di metodologie e modelli idraulici a diversa complessità, hanno evidenziato l’entità e l’impatto dei più importanti elementi d’incertezza, sottolineando come la corretta mappatura della pericolosità idraulica debba sempre essere accompagnata da una valutazione della sua incertezza.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The instability of river bank can result in considerable human and land losses. The Po river is the most important in Italy, characterized by main banks of significant and constantly increasing height. This study presents multilayer perceptron of artificial neural network (ANN) to construct prediction models for the stability analysis of river banks along the Po River, under various river and groundwater boundary conditions. For this aim, a number of networks of threshold logic unit are tested using different combinations of the input parameters. Factor of safety (FS), as an index of slope stability, is formulated in terms of several influencing geometrical and geotechnical parameters. In order to obtain a comprehensive geotechnical database, several cone penetration tests from the study site have been interpreted. The proposed models are developed upon stability analyses using finite element code over different representative sections of river embankments. For the validity verification, the ANN models are employed to predict the FS values of a part of the database beyond the calibration data domain. The results indicate that the proposed ANN models are effective tools for evaluating the slope stability. The ANN models notably outperform the derived multiple linear regression models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le tecniche di Machine Learning sono molto utili in quanto consento di massimizzare l’utilizzo delle informazioni in tempo reale. Il metodo Random Forests può essere annoverato tra le tecniche di Machine Learning più recenti e performanti. Sfruttando le caratteristiche e le potenzialità di questo metodo, la presente tesi di dottorato affronta due casi di studio differenti; grazie ai quali è stato possibile elaborare due differenti modelli previsionali. Il primo caso di studio si è incentrato sui principali fiumi della regione Emilia-Romagna, caratterizzati da tempi di risposta molto brevi. La scelta di questi fiumi non è stata casuale: negli ultimi anni, infatti, in detti bacini si sono verificati diversi eventi di piena, in gran parte di tipo “flash flood”. Il secondo caso di studio riguarda le sezioni principali del fiume Po, dove il tempo di propagazione dell’onda di piena è maggiore rispetto ai corsi d’acqua del primo caso di studio analizzato. Partendo da una grande quantità di dati, il primo passo è stato selezionare e definire i dati in ingresso in funzione degli obiettivi da raggiungere, per entrambi i casi studio. Per l’elaborazione del modello relativo ai fiumi dell’Emilia-Romagna, sono stati presi in considerazione esclusivamente i dati osservati; a differenza del bacino del fiume Po in cui ai dati osservati sono stati affiancati anche i dati di previsione provenienti dalla catena modellistica Mike11 NAM/HD. Sfruttando una delle principali caratteristiche del metodo Random Forests, è stata stimata una probabilità di accadimento: questo aspetto è fondamentale sia nella fase tecnica che in fase decisionale per qualsiasi attività di intervento di protezione civile. L'elaborazione dei dati e i dati sviluppati sono stati effettuati in ambiente R. Al termine della fase di validazione, gli incoraggianti risultati ottenuti hanno permesso di inserire il modello sviluppato nel primo caso studio all’interno dell’architettura operativa di FEWS.