5 resultados para resting-state networks
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.
Resumo:
The Peer-to-Peer network paradigm is drawing the attention of both final users and researchers for its features. P2P networks shift from the classic client-server approach to a high level of decentralization where there is no central control and all the nodes should be able not only to require services, but to provide them to other peers as well. While on one hand such high level of decentralization might lead to interesting properties like scalability and fault tolerance, on the other hand it implies many new problems to deal with. A key feature of many P2P systems is openness, meaning that everybody is potentially able to join a network with no need for subscription or payment systems. The combination of openness and lack of central control makes it feasible for a user to free-ride, that is to increase its own benefit by using services without allocating resources to satisfy other peers’ requests. One of the main goals when designing a P2P system is therefore to achieve cooperation between users. Given the nature of P2P systems based on simple local interactions of many peers having partial knowledge of the whole system, an interesting way to achieve desired properties on a system scale might consist in obtaining them as emergent properties of the many interactions occurring at local node level. Two methods are typically used to face the problem of cooperation in P2P networks: 1) engineering emergent properties when designing the protocol; 2) study the system as a game and apply Game Theory techniques, especially to find Nash Equilibria in the game and to reach them making the system stable against possible deviant behaviors. In this work we present an evolutionary framework to enforce cooperative behaviour in P2P networks that is alternative to both the methods mentioned above. Our approach is based on an evolutionary algorithm inspired by computational sociology and evolutionary game theory, consisting in having each peer periodically trying to copy another peer which is performing better. The proposed algorithms, called SLAC and SLACER, draw inspiration from tag systems originated in computational sociology, the main idea behind the algorithm consists in having low performance nodes copying high performance ones. The algorithm is run locally by every node and leads to an evolution of the network both from the topology and from the nodes’ strategy point of view. Initial tests with a simple Prisoners’ Dilemma application show how SLAC is able to bring the network to a state of high cooperation independently from the initial network conditions. Interesting results are obtained when studying the effect of cheating nodes on SLAC algorithm. In fact in some cases selfish nodes rationally exploiting the system for their own benefit can actually improve system performance from the cooperation formation point of view. The final step is to apply our results to more realistic scenarios. We put our efforts in studying and improving the BitTorrent protocol. BitTorrent was chosen not only for its popularity but because it has many points in common with SLAC and SLACER algorithms, ranging from the game theoretical inspiration (tit-for-tat-like mechanism) to the swarms topology. We discovered fairness, meant as ratio between uploaded and downloaded data, to be a weakness of the original BitTorrent protocol and we drew inspiration from the knowledge of cooperation formation and maintenance mechanism derived from the development and analysis of SLAC and SLACER, to improve fairness and tackle freeriding and cheating in BitTorrent. We produced an extension of BitTorrent called BitFair that has been evaluated through simulation and has shown the abilities of enforcing fairness and tackling free-riding and cheating nodes.
Resumo:
Complex Networks analysis turn out to be a very promising field of research, testified by many research projects and works that span different fields. Those analysis have been usually focused on characterize a single aspect of the system and a study that considers many informative axes along with a network evolve is lacking. We propose a new multidimensional analysis that is able to inspect networks in the two most important dimensions, space and time. To achieve this goal, we studied them singularly and investigated how the variation of the constituting parameters drives changes to the network as a whole. By focusing on space dimension, we characterized spatial alteration in terms of abstraction levels. We proposed a novel algorithm that, by applying a fuzziness function, can reconstruct networks under different level of details. We verified that statistical indicators depend strongly on the granularity with which a system is described and on the class of networks. We keep fixed the space axes and we isolated the dynamics behind networks evolution process. We detected new instincts that trigger social networks utilization and spread the adoption of novel communities. We formalized this enhanced social network evolution by adopting special nodes (called sirens) that, thanks to their ability to attract new links, were able to construct efficient connection patterns. We simulated the dynamics of the system by considering three well-known growth models. Applying this framework to real and synthetic networks, we showed that the sirens, even when used for a limited time span, effectively shrink the time needed to get a network in mature state. In order to provide a concrete context of our findings, we formalized the cost of setting up such enhancement and provided the best combinations of system's parameters, such as number of sirens, time span of utilization and attractiveness.
Resumo:
Wireless networks rapidly became a fundamental pillar of everyday activities. Whether at work or elsewhere, people often benefits from always-on connections. This trend is likely to increase, and hence actual technologies struggle to cope with the increase in traffic demand. To this end, Cognitive Wireless Networks have been studied. These networks aim at a better utilization of the spectrum, by understanding the environment in which they operate, and adapt accordingly. In particular recently national regulators opened up consultations on the opportunistic use of the TV bands, which became partially free due to the digital TV switch over. In this work, we focus on the indoor use of of TVWS. Interesting use cases like smart metering and WiFI like connectivity arise, and are studied and compared against state of the art technology. New measurements for TVWS networks will be presented and evaluated, and fundamental characteristics of the signal derived. Then, building on that, a new model of spectrum sharing, which takes into account also the height from the terrain, is presented and evaluated in a real scenario. The principal limits and performance of TVWS operated networks will be studied for two main use cases, namely Machine to Machine communication and for wireless sensor networks, particularly for the smart grid scenario. The outcome is that TVWS are certainly interesting to be studied and deployed, in particular when used as an additional offload for other wireless technologies. Seeing TVWS as the only wireless technology on a device is harder to be seen: the uncertainity in channel availability is the major drawback of opportunistic networks, since depending on the primary network channel allocation might lead in having no channels available for communication. TVWS can be effectively exploited as offloading solutions, and most of the contributions presented in this work proceed in this direction.