4 resultados para residence time distribution, RTD, stormwater
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
The most relevant thermo-mechanical properties of SiC or C based CFCCs are high strength, high toughness, low weight, high reliability, thermal shock and fatigue resistance. Thanks to these special characteristics, the CFCCs are the best candidates to substitute metals and monolithic ceramics, traditionally employed to realize components in energy, aeronautic and nuclear fields. Among the commonly techniques for the CFCCs production, CVI still represents the most significant one. Its main advantages are the versatility, the high quality deposits and the fact that it is conducted under mild temperature conditions. On the other hand, this technique is quite complex, therefore the set up of all process parameters needs long development time. The main purpose of the present study was to analyze the parameters controlling the CVD and CVI processes. Specifically, deposition and infiltration of SiC and Py-C tests were conducted on non-porous and porous substrates. The experiments were performed with a pilot size Isothermal/Isobaric CVI plant, designed and developed by ENEA. To guarantee the control of the process parameters, a previously optimization of the plant was needed. Changing temperature, pressure, flow rates and methane/hydrogen ratio, the Py-C deposition rate value, for an optimal fibre/matrix interphase thickness, was determined. It was also underlined the hydrogen inhibiting effect over the Py-C deposition rate. Regarding SiC morphologies, a difference between the inner and outer substrate surfaces was observed, as a consequence of a flow rate non-uniformity. In the case of the Cf/C composites development, the key parameter of the CVI process was the gas residence time. In fact, the hydrogen inhibiting effect was evident only with high value of residence time. Furthermore, lower the residence time more homogeneous the Py-C deposition rate was obtained along the reaction chamber axis. Finally, a CVD and CVI theoretical modelling was performed.
Resumo:
The aim of this thesis was the formulation of new chitosan based delivery systems for transmucosal drug administration. Transmucosal routes, such as buccal, vaginal and nasal routes, allow the circumvention of the hepatic first pass metabolism and avoid the gastrointestinal chemical and enzymatic degradations. Moreover, transmucosal drug administration can allow to avoid pain or discomfort caused by injections, when drugs are administered through parenteral routes, thus increasing patient compliance. On the other side, the major disadvantage of transmucosal drug administration is represented by the presence of biological fluids and mucus that can remove drug systems from the application site, thus reducing the contact time between drug and mucosa and consequently, decreasing drug bioavailability. For this reason, in this study, the investigation of chitosan delivery systems as mucoadhesive formulations able to increase drugs residence time and to improve their bioavailability, was taken into account. In the paper 1, buccal films based on chitosan-gelatin complexes were prepared and loaded with propranolol hydrochloride. The complexes were characterized and studied in order to evaluate their physical- chemical properties and their ability to release the drug and to allow its permeation through buccal mucosa. In the paper 2, vaginal inserts based on chitosan/alginate complexes were formulated for local delivery of chlorhexidine digluconate. Tests to evaluate the interaction between the polymers and to study drug release properties were performed, as well as the determination of antimicrobial activity against the patogens responsible of vaginitis and candidosis. In the project 3, chitosan based nanoparticles containing cyclodextrin and other excipients, with the capacity to modify insulin bioavailabity were formulated for insulin nasal delivery. Nanoparticles were characterized in terms of size, stability and drug release. Moreover, in vivo tests were performed in order to study the hypoglycemic reduction in rats blood samples.