4 resultados para research data
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This dissertation proposes an analysis of the governance of the European scientific research, focusing on the emergence of the Open Science paradigm: a new way of doing science, oriented towards the openness of every phase of the scientific research process, able to take full advantage of the digital ICTs. The emergence of this paradigm is relatively recent, but in the last years it has become increasingly relevant. The European institutions expressed a clear intention to embrace the Open Science paradigm (eg., think about the European Open Science Cloud, EOSC; or the establishment of the Horizon Europe programme). This dissertation provides a conceptual framework for the multiple interventions of the European institutions in the field of Open Science, addressing the major legal challenges of its implementation. The study investigates the notion of Open Science, proposing a definition that takes into account all its dimensions related to the human and fundamental rights framework in which Open Science is grounded. The inquiry addresses the legal challenges related to the openness of research data, in light of the European Open Data framework and the impact of the GDPR on the context of Open Science. The last part of the study is devoted to the infrastructural dimension of the Open Science paradigm, exploring the e-infrastructures. The focus is on a specific type of computational infrastructure: the High Performance Computing (HPC) facility. The adoption of HPC for research is analysed from the European perspective, investigating the EuroHPC project, and the local perspective, proposing the case study of the HPC facility of the University of Luxembourg, the ULHPC. This dissertation intends to underline the relevance of the legal coordination approach, between all actors and phases of the process, in order to develop and implement the Open Science paradigm, adhering to the underlying human and fundamental rights.
Resumo:
The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.
Resumo:
The project answers to the following central research question: ‘How would a moral duty of patients to transfer (health) data for the benefit of health care improvement, research, and public health in the eHealth sector sit within the existing confidentiality, privacy, and data protection legislations?’. The improvement of healthcare services, research, and public health relies on patient data, which is why one might raise the question concerning a potential moral responsibility of patients to transfer data concerning health. Such a responsibility logically would have subsequent consequences for care providers concerning the further transferring of health data with other healthcare providers or researchers and other organisations (who also possibly transfer the data further with others and other organisations). Otherwise, the purpose of the patients’ moral duty, i.e. to improve the care system and research, would be undermined. Albeit the arguments that may exist in favour of a moral responsibility of patients to share health-related data, there are also some moral hurdles that come with such a moral responsibility. Furthermore, the existing European and national confidentiality, privacy and data protection legislations appear to hamper such a possible moral duty, and they may need to be reconsidered to unlock the full use of data for healthcare and research.
Resumo:
Big data and AI are paving the way to promising scenarios in clinical practice and research. However, the use of such technologies might clash with GDPR requirements. Today, two forces are driving the EU policies in this domain. The first is the necessity to protect individuals’ safety and fundamental rights. The second is to incentivize the deployment of innovative technologies. The first objective is pursued by legislative acts such as the GDPR or the AIA, the second is supported by the new data strategy recently launched by the European Commission. Against this background, the thesis analyses the issue of GDPR compliance when big data and AI systems are implemented in the health domain. The thesis focuses on the use of co-regulatory tools for compliance with the GDPR. This work argues that there are two level of co-regulation in the EU legal system. The first, more general, is the approach pursued by the EU legislator when shaping legislative measures that deal with fast-evolving technologies. The GDPR can be deemed a co-regulatory solution since it mainly introduces general requirements, which implementation shall then be interpretated by the addressee of the law following a risk-based approach. This approach, although useful is costly and sometimes burdensome for organisations. The second co-regulatory level is represented by specific co-regulatory tools, such as code of conduct and certification mechanisms. These tools are meant to guide and support the interpretation effort of the addressee of the law. The thesis argues that the lack of co-regulatory tools which are supposed to implement data protection law in specific situations could be an obstacle to the deployment of innovative solutions in complex scenario such as the health ecosystem. The thesis advances hypothesis on theoretical level about the reasons of such a lack of co-regulatory solutions.