3 resultados para reproductive toxicity

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wide use of glyphosate-based herbicides (GBHs) has become a controversial issue due to the potential harmful effects on human health. Commercial formulations, among which Roundup is the most famous one, contain a number of adjuvants inside; most of these are patented and not publicly known, therefore, they can act differently from glyphosate alone and might strengthen its toxic effect. Our study is focused on GBHs reproductive toxicity with a special regard to glyphosate and Roundup impact on male and female mammalian gametes after exposure to concentrations ranging from the one recommended for agricultural use (0.1% Roundup, containing 360 µg/mL glyphosate) to 70-fold lower or more. Sperm quality analysis, either on boar and stallion, showed that Roundup has much more detrimental impact than glyphosate at equivalent concentrations on spermatozoa function and survival. Basing on our results, the toxic effect of these pesticides on spermatozoa may be linked to an impairment in mitochondrial activity and a subsequent decrease in ATP production and/or alterations in the redox balance, which impact cell motility and plasma membrane stability. Moreover, a different species sensitivity to GBHs may exists as high doses of glyphosate affected sperm quality only in boar and not in stallion; furthermore, Roundup had deleterious effects at lower doses in the first compared to the latter. With regard to female gametes, we found that glyphosate and Roundup exposure during IVM detrimentally affect the subsequent developmental ability of swine embryos, providing further evidence of their potential toxic effect on female reproductive system. In addition, Roundup altered steroidogenesis and increased oocyte ROS levels. Therefore, according to our results, we can conclude that GBHs exert a negative impact on both male and female gametes and that Roundup adjuvants enhance glyphosate toxic effects and/or are biologically active in their side-effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acrylamide (AA) is an undesirable food toxic compound, classified as 'probably carcinogenic to humans' by the International Agency for Research on Cancer due to its toxic effects, including neurotoxicity, genotoxicity, carcinogenicity and reproductive toxicity. AA is mainly formed during the heat treatment of foods (> 120 °C) by the Maillard reaction, an essential reaction that also allows the desired levels of shelf-life and sensory properties of various food products to be achieved. Over the years, authorities and regulations have become more restrictive regarding the maximum levels of AA permitted in foods and beverages. The latest Commission Regulation (EU) 2017/2158 contains reference levels and measures to reduce AA in several food groups that contribute to the highest dietary intake, making necessary the study of promising AA mitigation strategies. The aim of this PhD research project was to identify, characterise and optimise some AA mitigation strategies in the most at-risk widely consumed foods such as potato, coffee and bakery products. Some AA control strategies were selected and investigated for each food category, also considering the main quality characteristics of the final products. The comprehensive results obtained during the three years of research activity have allowed a deeper knowledge of the traditional and innovative AA mitigation strategies, which can be extremely useful for both the food industry and international authorities. The most promising strategies studied in terms of reduction of AA while maintaining the main quality characteristics of the examined foods were: the application of pulsed electric fields and yeast immersion as pre-treatments of chips for frying; the selection of high roasting degrees for coffee products; the selection of static baking conditions for biscuits; the optimisation of alternative biscuit’ formulations by both the use of chickpea legume flour and of flour from bean with intact cotyledon cell walls.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glyphosate-based herbicides (GBHs) are the most globally used herbicides raising the risk of environmental exposition. Carcinogenic effects are only one component of the multiple adverse health effects of Glyphosate and GBHs that have been reported. Questions related to hazards and corresponding risks identified in relation to endocrine disrupting effects are rising. The present study investigated the possible reproductive/developmental toxicity of GBHs administered to male and female Sprague-Dawley rats under various calendar of treatment. Assessments included maternal and reproductive outcome of F0 and F1 dams exposed to GBHs throughout pregnancy and lactation and developmental landmarks and sexual characteristics of offspring. The study was designed in two stages. In the first stage Glyphosate, or its commercial formulation Roundup Bioflow, was administered to rats at the dose of 1.75 mg/kg bw/day (Glyphosate US Acceptable Daily Intake) from the prenatal period until adulthood. In the second stage, multiple toxicological parameters were simultaneously assessed, including multigeneration reproductive/developmental toxicity of Glyphosate and two GBHs (Roundup Bioflow and Ranger Pro). Man-equivalent doses, beginning from 0.5 mg/kg bw/day (ADI Europe) up to 50 mg/kg bw/day (NOAEL Glyphosate), were administered to male and female rats, covering specific windows of biological susceptibility. The results of stage 1 and preliminary data from stage 2 experiments characterize GBHs as probable endocrine disruptors as suggested by: 1) androgen-like effects of Roundup Bioflow, including a significant increase of anogenital distances in both males and females, delay of first estrous and increased testosterone in females; 2) slight puberty onset anticipation in the high dose of Ranger Pro group, observed in the F1 generation treated from in utero life until adulthood; 3) a delayed balano-preputial separation achievement in the high dose of Ranger Pro-treated males exposed only during the peri-pubertal period, indicating a direct and specific effect of GBHs depending on the timing of exposure.