7 resultados para relation analysis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Persistent Topology is an innovative way of matching topology and geometry, and it proves to be an effective mathematical tool in shape analysis. In order to express its full potential for applications, it has to interface with the typical environment of Computer Science: It must be possible to deal with a finite sampling of the object of interest, and with combinatorial representations of it. Following that idea, the main result claims that it is possible to construct a relation between the persistent Betti numbers (PBNs; also called rank invariant) of a compact, Riemannian submanifold X of R^m and the ones of an approximation U of X itself, where U is generated by a ball covering centered in the points of the sampling. Moreover we can state a further result in which, this time, we relate X with a finite simplicial complex S generated, thanks to a particular construction, by the sampling points. To be more precise, strict inequalities hold only in "blind strips'', i.e narrow areas around the discontinuity sets of the PBNs of U (or S). Out of the blind strips, the values of the PBNs of the original object, of the ball covering of it, and of the simplicial complex coincide, respectively.
Resumo:
The present work is devoted to the assessment of the energy fluxes physics in the space of scales and physical space of wall-turbulent flows. The generalized Kolmogorov equation will be applied to DNS data of a turbulent channel flow in order to describe the energy fluxes paths from production to dissipation in the augmented space of wall-turbulent flows. This multidimensional description will be shown to be crucial to understand the formation and sustainment of the turbulent fluctuations fed by the energy fluxes coming from the near-wall production region. An unexpected behavior of the energy fluxes comes out from this analysis consisting of spiral-like paths in the combined physical/scale space where the controversial reverse energy cascade plays a central role. The observed behavior conflicts with the classical notion of the Richardson/Kolmogorov energy cascade and may have strong repercussions on both theoretical and modeling approaches to wall-turbulence. To this aim a new relation stating the leading physical processes governing the energy transfer in wall-turbulence is suggested and shown able to capture most of the rich dynamics of the shear dominated region of the flow. Two dynamical processes are identified as driving mechanisms for the fluxes, one in the near wall region and a second one further away from the wall. The former, stronger one is related to the dynamics involved in the near-wall turbulence regeneration cycle. The second suggests an outer self-sustaining mechanism which is asymptotically expected to take place in the log-layer and could explain the debated mixed inner/outer scaling of the near-wall statistics. The same approach is applied for the first time to a filtered velocity field. A generalized Kolmogorov equation specialized for filtered velocity field is derived and discussed. The results will show what effects the subgrid scales have on the resolved motion in both physical and scale space, singling out the prominent role of the filter length compared to the cross-over scale between production dominated scales and inertial range, lc, and the reverse energy cascade region lb. The systematic characterization of the resolved and subgrid physics as function of the filter scale and of the wall-distance will be shown instrumental for a correct use of LES models in the simulation of wall turbulent flows. Taking inspiration from the new relation for the energy transfer in wall turbulence, a new class of LES models will be also proposed. Finally, the generalized Kolmogorov equation specialized for filtered velocity fields will be shown to be an helpful statistical tool for the assessment of LES models and for the development of new ones. As example, some classical purely dissipative eddy viscosity models are analyzed via an a priori procedure.
Resumo:
The candidate tackled an important issue in contemporary management: the role of CSR and Sustainability. The research proposal focused on a longitudinal and inductive research, directed to specify the evolution of CSR and contribute to the new institutional theory, in particular institutional work framework, and to the relation between institutions and discourse analysis. The documental analysis covers all the evolution of CSR, focusing also on a number of important networks and associations. Some of the methodologies employed in the thesis have been employed as a consequence of data analysis, in a truly inductive research process. The thesis is composed by two section. The first section mainly describes the research process and the analyses results. The candidates employed several research methods: a longitudinal content analysis of documents, a vocabulary research with statistical metrics as cluster analysis and factor analysis, a rhetorical analysis of justifications. The second section puts in relation the analysis results with theoretical frameworks and contributions. The candidate confronted with several frameworks: Actor-Network-Theory, Institutional work and Boundary Work, Institutional Logic. Chapters are focused on different issues: a historical reconstruction of CSR; a reflection about symbolic adoption of recurrent labels; two case studies of Italian networks, in order to confront institutional and boundary works; a theoretical model of institutional change based on contradiction and institutional complexity; the application of the model to CSR and Sustainability, proposing Sustainability as a possible institutional logic.
Resumo:
The present work is a collection of three essays devoted at understanding the determinants and implications of the adoption of environmental innovations EI by firms, by adopting different but strictly related schumpeterian perspectives. Each of the essays is an empirical analysis that investigates one original research question, formulated to properly fill the gaps that emerged in previous literature, as the broad introduction of this thesis outlines. The first Chapter is devoted at understanding the determinants of EI by focusing on the role that knowledge sources external to the boundaries of the firm, such as those coming from business suppliers or customers or even research organizations, play in spurring their adoption. The second Chapter answers the question on what induces climate change technologies, adopting regional and sectoral lens, and explores the relation among green knowledge generation, inducement in climate change and environmental performances. Chapter 3 analyzes the economic implications of the adoption of EI for firms, and proposes to disentangle EI by different typologies of innovations, such as externality reducing innovations and energy and resource efficient innovations. Each Chapter exploits different dataset and heterogeneous econometric models, that allow a better extension of the results and to overcome the limits that the choice of one dataset with respect to its alternatives engenders. The first and third Chapter are based on an empirical investigation on microdata, i.e. firm level data extracted from innovation surveys. The second Chapter is based on the analysis of patent data in green technologies that have been extracted by the PATSTAT and REGPAT database. A general conclusive Chapter will follow the three essays and will outline how each Chapter filled the research gaps that emerged, how its results can be interpreted, which policy implications can be derived and which are the possible future lines of research in the field.
Resumo:
This thesis provides a thoroughly theoretical background in network theory and shows novel applications to real problems and data. In the first chapter a general introduction to network ensembles is given, and the relations with “standard” equilibrium statistical mechanics are described. Moreover, an entropy measure is considered to analyze statistical properties of the integrated PPI-signalling-mRNA expression networks in different cases. In the second chapter multilayer networks are introduced to evaluate and quantify the correlations between real interdependent networks. Multiplex networks describing citation-collaboration interactions and patterns in colorectal cancer are presented. The last chapter is completely dedicated to control theory and its relation with network theory. We characterise how the structural controllability of a network is affected by the fraction of low in-degree and low out-degree nodes. Finally, we present a novel approach to the controllability of multiplex networks