3 resultados para relatedness

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general aim of the thesis was to investigate how and to what extent the characteristics of action organization are reflected in language, and how they influence language processing and understanding. Even though a huge amount of research has been devoted to the study of the motor effects of language, this issue is very debated in literature. Namely, the majority of the studies have focused on low-level motor effects such as effector-relatedness of action, whereas only a few studies have started to systematically investigate how specific aspects of action organization are encoded and reflected in language. After a review of previous studies on the relationship between language comprehension and action (chapter 1) and a critical discussion of some of them (chapter 2), the thesis is composed by three experimental chapters, each devoted to a specific aspect of action organization. Chapter 3 presents a study designed with the aim to disentangle the effective time course of the involvement of the motor system during language processing. Three kinematics experiments were designed in order to determine whether and, at which stage of motor planning and execution effector-related action verbs influence actions executed with either the same or a different effector. Results demonstrate that the goal of an action can be linguistically re-activated, producing a modulation of the motor response. In chapter 4, a second study investigates the interplay between the role of motor perspective (agent) and the organization of action in motor chains. More specifically, this kinematics study aims at deepening how goal can be translated in language, using as stimuli simple sentences composed by a pronoun (I, You, He/She) and a verb. Results showed that the perspective activated by the pronoun You reflects the motor pattern of the “agent” combined with the chain structure of the verb. These data confirm an early involvement of the motor system in language processing, suggesting that it is specifically modulated by the activation of the agent’s perspective. In chapter 5, the issue of perspective is specifically investigated, focusing on its role in language comprehension. In particular, this study aimed at determining how a specific perspective (induced for example by a personal pronoun) modulates motor behaviour during and after language processing. A classical compatibility effect (the Action-sentence compatibility effect) has been used to this aim. In three behavioural experiments the authors investigated how the ACE is modulated by taking first or third person perspective. Results from these experiments showed that the ACE effect occurs only when a first-person perspective is activated by the sentences used as stimuli. Overall, the data from this thesis contributed to disentangle several aspects of how action organization is translated in language, and then reactivated during language processing. This constitutes a new contribution to the field, adding lacking information on how specific aspects such as goal and perspective are linguistically described. In addition, these studies offer a new point of view to understand the functional implications of the involvement of the motor system during language comprehension, specifically from the point of view of our social interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD Thesis includes five main parts on diverse topics. The first two parts deal with the trophic ecology of wolves in Italy consequently to a recent increase of wild ungulates abundance. Data on wolf diet across time highlighted how wild ungulates are important food resource for wolves in Italy. Increasing wolf population, increasing numbers of wild ungulates and decreasing livestock consume are mitigating wolf-man conflicts in Italy in the near future. In the third part, non-invasive genetic sampling techniques were used to obtain genotypes and genders of about 400 wolves. Thus, wolf packs were genetically reconstructed using diverse population genetic and parentage software. Combining the results on pack structure and genetic relatedness with sampling locations, home ranges of wolf packs and dispersal patterns were identified. These results, particularly important for the conservation management of wolves in Italy, illustrated detailed information that can be retrieved from genetic identification of individuals. In the fourth part, wolf locations were combined with environmental information obtained as GIS-layers. Modern species distribution models (niche models) were applied to infer potential wolf distribution and predation risk. From the resulting distribution maps, information pastures with the highest risk of depredation were derived. This is particularly relevant as it allows identifying those areas under danger of carnivore attack on livestock. Finally, in the fifth part, habitat suitability models were combined with landscape genetic analysis. On one side landscape genetic analyses on the Italian wolves provided new information on the dynamics and connectivity of the population and, on the other side, a profound analysis of the effects that habitat suitability methods had on the parameterization of landscape genetic analyses was carried out to contributed significantly to landscape genetic theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.