4 resultados para reduction of acetaldehyde

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a comprehensive methodology for the reduction of analytical or numerical stochastic models characterized by uncertain input parameters or boundary conditions. The technique, based on the Polynomial Chaos Expansion (PCE) theory, represents a versatile solution to solve direct or inverse problems related to propagation of uncertainty. The potentiality of the methodology is assessed investigating different applicative contexts related to groundwater flow and transport scenarios, such as global sensitivity analysis, risk analysis and model calibration. This is achieved by implementing a numerical code, developed in the MATLAB environment, presented here in its main features and tested with literature examples. The procedure has been conceived under flexibility and efficiency criteria in order to ensure its adaptability to different fields of engineering; it has been applied to different case studies related to flow and transport in porous media. Each application is associated with innovative elements such as (i) new analytical formulations describing motion and displacement of non-Newtonian fluids in porous media, (ii) application of global sensitivity analysis to a high-complexity numerical model inspired by a real case of risk of radionuclide migration in the subsurface environment, and (iii) development of a novel sensitivity-based strategy for parameter calibration and experiment design in laboratory scale tracer transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Levulinic Acid and its esters are polyfunctional molecules obtained by biomass conversion. The most investigated strategy for the valorization of LA is its hydrogenation towards fuel additives, solvents and other added-value bio-based chemicals and, in this context, heterogeneous and homogeneous catalysts are widely used. Most commonly, it is typically performed with molecular hydrogen (H2) in batch systems, with high H2 pressures and noble metal catalysts. Several works reported the batch liquid-phase hydrogenation of LA and its esters by heterogenous catalysts which contained support with Brønsted acidity in order to obtain valeric acid and its esters. Furthermore, bimetallic and monometallic systems composed by both a metal for hydrogen activation and a promoter were demonstrated to be suitable catalysts for reduction of carboxylic group. However, there were no studies in the literature reporting the hydrogenation of alkyl levulinates to 1-pentanol (1-PAO). Therefore, bimetallic and monometallic catalysts were tested for one-pot hydrogenation of methyl levulinate to 1-PAO. Re-based catalysts were investigated, this way proving the crucial role of the support for promoting the ring-opening of GVL and its consecutive reduction to valeric compounds. All the reactions were performed in neat without the need of any additional solvents. In these conditions, bimetallic Re-Ru-O/HZSM-5 afforded methyl valerate and valeric acid (VA) with a productivity of 512 mmol gmetal-1 h-1, one of the highest reported in literature to date. Rhenium can also promote the reduction of valeric acid/esters to PV through the formation of 1-pentanol and its efficient esterification/transesterification with the starting material. However, it was proved that Re-based catalysts may undergo leaching of active phase in presence of carboxylic acids, especially by working in neat with VA. Furthermore, the over-reduction of rhenium affects catalytic performance, suggesting not only that a pre-reduction step is unnecessary but also that it could be detrimental for catalyst’s activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrocatalytic reduction of CO2 (CO2RR) is a captivating strategy for the conversion of CO2 into fuels, to realize a carbon neutral circular economy. In the recent years, research has focused on the development of new materials and technology capable of capturing and converting CO2 into useful products. The main problem of CO2RR is given by its poor selectivity, which can lead to the formation of numerous reaction products, to the detriment of efficiencies. For this reason, the design of new electrocatalysts that selectively and efficiently reduce CO2 is a fundamental step for the future exploitation of this technology. Here we present a new class of electrocatalysts, designed with a modular approach, namely, deriving from the combination of different building blocks in a single nanostructure. With this approach it is possible to obtain materials with an innovative design and new functionalities, where the interconnections between the various components are essential to obtain a highly selective and efficient reduction of CO2, thus opening up new possibilities in the design of optimized electrocatalytic materials. By combining the unique physic-chemical properties of carbon nanostructures (CNS) with nanocrystalline metal oxides (MO), we were able to modulate the selectivity of CO2RR, with the production of formic acid and syngas at low overpotentials. The CNS have not only the task of stabilizing the MO nanoparticles, but the creation of an optimal interface between two nanostructures is able to improve the catalytic activity of the active phase of the material. While the presence of oxygen atoms in the MO creates defects that accelerate the reaction kinetics and stabilize certain reaction intermediates, selecting the reaction pathway. Finally, a part was dedicated to the study of the experimental parameters influencing the CO2RR, with the aim of improving the experimental setup in order to obtain commercial catalytic performances.