21 resultados para real operating conditions measurement

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the development of a simulation tool which allows the simulation of the Internal Combustion Engine (ICE), the transmission and the vehicle dynamics. It is a control oriented simulation tool, designed in order to perform both off-line (Software In the Loop) and on-line (Hardware In the Loop) simulation. In the first case the simulation tool can be used in order to optimize Engine Control Unit strategies (as far as regard, for example, the fuel consumption or the performance of the engine), while in the second case it can be used in order to test the control system. In recent years the use of HIL simulations has proved to be very useful in developing and testing of control systems. Hardware In the Loop simulation is a technology where the actual vehicles, engines or other components are replaced by a real time simulation, based on a mathematical model and running in a real time processor. The processor reads ECU (Engine Control Unit) output signals which would normally feed the actuators and, by using mathematical models, provides the signals which would be produced by the actual sensors. The simulation tool, fully designed within Simulink, includes the possibility to simulate the only engine, the transmission and vehicle dynamics and the engine along with the vehicle and transmission dynamics, allowing in this case to evaluate the performance and the operating conditions of the Internal Combustion Engine, once it is installed on a given vehicle. Furthermore the simulation tool includes different level of complexity, since it is possible to use, for example, either a zero-dimensional or a one-dimensional model of the intake system (in this case only for off-line application, because of the higher computational effort). Given these preliminary remarks, an important goal of this work is the development of a simulation environment that can be easily adapted to different engine types (single- or multi-cylinder, four-stroke or two-stroke, diesel or gasoline) and transmission architecture without reprogramming. Also, the same simulation tool can be rapidly configured both for off-line and real-time application. The Matlab-Simulink environment has been adopted to achieve such objectives, since its graphical programming interface allows building flexible and reconfigurable models, and real-time simulation is possible with standard, off-the-shelf software and hardware platforms (such as dSPACE systems).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is the study of techniques for efficient management and use of the spectrum based on cognitive radio technology. The ability of cognitive radio technologies to adapt to the real-time conditions of its operating environment, offers the potential for more flexible use of the available spectrum. In this context, the international interest is particularly focused on the “white spaces” in the UHF band of digital terrestrial television. Spectrum sensing and geo-location database have been considered in order to obtain information on the electromagnetic environment. Different methodologies have been considered in order to investigate spectral resources potentially available for the white space devices in the TV band. The adopted methodologies are based on the geo-location database approach used either in autonomous operation or in combination with sensing techniques. A novel and computationally efficient methodology for the calculation of the maximum permitted white space device EIRP is then proposed. The methodology is suitable for implementation in TV white space databases. Different Italian scenarios are analyzed in order to identify both the available spectrum and the white space device emission limits. Finally two different applications of cognitive radio technology are considered. The first considered application is the emergency management. The attention is focused on the consideration of both cognitive and autonomic networking approaches when deploying an emergency management system. The cognitive technology is then considered in applications related to satellite systems. In particular a hybrid cognitive satellite-terrestrial is introduced and an analysis of coexistence between terrestrial and satellite networks by considering a cognitive approach is performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La valutazione dei rischi associati all’operatività dei sistemi di stoccaggio, quali la sismicità indotta e la subsidenza, è requisito basilare per una loro corretta gestione e progettazione, e passa attraverso la definizione dell’influenza sullo stato tensionale delle variazioni di pressione di poro nel sottosuolo. Principale scopo di questo progetto è lo sviluppo di una metodologia in grado di quantificare le deformazioni dei reservoir in funzione della pressione di poro, di tarare i modelli utilizzati con casi studio che presentino dati di monitoraggio reali, tali da consentire un confronto con le previsioni di modello. In questa tesi, la teoria delle inomogeneità è stata utilizzata, tramite un approccio semianalitico, per definire le variazioni dei campi elastici derivanti dalle operazioni di prelievo e immissione di fluidi in serbatoi geologici. Estensione, forma e magnitudo delle variazioni di stress indotte sono state valutate tramite il concetto di variazione dello sforzo critico secondo il criterio di rottura di Coulomb, tramite un’analisi numerica agli elementi finiti. La metodologia sviluppata è stata applicata e tarata su due reservoir sfruttati e riconvertiti a sistemi di stoccaggio che presentano dataset, geologia, petrofisica, e condizioni operative differenti. Sono state calcolate le variazioni dei campi elastici e la subsidenza; è stata mappata la variazione di sforzo critico di Coulomb per entrambi i casi. I risultati ottenuti mostrano buon accordo con le osservazioni dei monitoraggi, suggerendo la bontà della metodologia e indicando la scarsa probabilità di sismicità indotta. Questo progetto ha consentito la creazione di una piattaforma metodologica di rapido ed efficace utilizzo, per stimare l’influenza dei sistemi di stoccaggio di gas sullo stato tensionale della crosta terrestre; in fase di stoccaggio, permette di monitorare le deformazioni e gli sforzi indotti; in fase di progettazione, consente di valutare le strategie operative per monitorare e mitigare i rischi geologici associati a questi sistemi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research of new catalysts for the hydrogen production described in this thesis was inserted within a collaboration of Department of Industrial Chemistry and Materials of University of Bologna and Air Liquide (Centre de Recherche Claude-Delorme, Paris). The aim of the work was focused on the study of new materials, active and stable in the hydrogen production from methane, using either a new process, the catalytic partial oxidation (CPO), or a enhanced well-established process, the steam methane reforming (SMR). Two types of catalytic materials were examined: 1) Bulk catalysts, i.e. non-supported materials, in which the active metals (Ni and/or Rh) are stabilized inside oxidic matrix, obtained from perovskite type compounds (PVK) and from hydrotalcite type precursors (HT); 2) Structured catalysts, i.e. catalysts supported on materials having high thermal conductivity (SiC and metallic foams). As regards the catalytic partial oxidation, the effect of the metal (Ni and/or Rh), the role of the metal/matrix ratio and the matrix formulation of innovative catalysts obtained from hydrotalcite type precursors and from perovskites were examined. In addition, about steam reforming process, the study was carried out first on commercial type catalysts, examining the deactivation in industrial conditions, the role of the operating conditions and the activity of different type of catalysts. Then, innovative materials bulk (PVK and HT) and structured catalysts (SiC and metallic foam) were studied and a new preparation method was developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Department of Mechanical and Civil Engineering (DIMeC) of the University of Modena and Reggio Emilia is developing a new type of small capacity HSDI 2-Stroke Diesel engine (called HSD2), featuring a specifically designed combustion system, aimed to reduce weight, size and manufacturing costs, and improving pollutant emissions at partial load. The present work is focused on the analysis of the combustion and the scavenging process, investigated by means of a version of the KIVA-3V code customized by the University of Chalmers and modified by DIMeC. The customization of the KIVA-3V code includes a detailed combustion chemistry approach, coupled with a comprehensive oxidation mechanism for diesel oil surrogate and the modeling of turbulence/chemistry interaction through the PaSR (Partially Stirred Reactor) model. A four stroke automobile Diesel engine featuring a very close bore size is taken as a reference, for both the numerical models calibration and for a comparison with the 2-Stroke engine. Analysis is carried out trough a comparison between HSD2 and FIAT 1300 MultiJet in several operating conditions, at full and partial load. Such a comparison clearly demonstrates the effectiveness of the two stroke concept in terms of emissions reduction and high power density. However, HSD2 is still a virtual engine, and experimental results are needed to assume the reliability of numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi riguarda l'analisi delle trasmissioni ad ingranaggi e delle ruote dentate in generale, nell'ottica della minimizzazione delle perdite di energia. È stato messo a punto un modello per il calcolo della energia e del calore dissipati in un riduttore, sia ad assi paralleli sia epicicloidale. Tale modello consente di stimare la temperatura di equilibrio dell'olio al variare delle condizioni di funzionamento. Il calcolo termico è ancora poco diffuso nel progetto di riduttori, ma si è visto essere importante soprattutto per riduttori compatti, come i riduttori epicicloidali, per i quali la massima potenza trasmissibile è solitamente determinata proprio da considerazioni termiche. Il modello è stato implementato in un sistema di calcolo automatizzato, che può essere adattato a varie tipologie di riduttore. Tale sistema di calcolo consente, inoltre, di stimare l'energia dissipata in varie condizioni di lubrificazione ed è stato utilizzato per valutare le differenze tra lubrificazione tradizionale in bagno d'olio e lubrificazione a “carter secco” o a “carter umido”. Il modello è stato applicato al caso particolare di un riduttore ad ingranaggi a due stadi: il primo ad assi paralleli ed il secondo epicicloidale. Nell'ambito di un contratto di ricerca tra il DIEM e la Brevini S.p.A. di Reggio Emilia, sono state condotte prove sperimentali su un prototipo di tale riduttore, prove che hanno consentito di tarare il modello proposto [1]. Un ulteriore campo di indagine è stato lo studio dell’energia dissipata per ingranamento tra due ruote dentate utilizzando modelli che prevedano il calcolo di un coefficiente d'attrito variabile lungo il segmento di contatto. I modelli più comuni, al contrario, si basano su un coefficiente di attrito medio, mentre si può constatare che esso varia sensibilmente durante l’ingranamento. In particolare, non trovando in letteratura come varia il rendimento nel caso di ruote corrette, ci si è concentrati sul valore dell'energia dissipata negli ingranaggi al variare dello spostamento del profilo. Questo studio è riportato in [2]. È stata condotta una ricerca sul funzionamento di attuatori lineari vite-madrevite. Si sono studiati i meccanismi che determinano le condizioni di usura dell'accoppiamento vite-madrevite in attuatori lineari, con particolare riferimento agli aspetti termici del fenomeno. Si è visto, infatti, che la temperatura di contatto tra vite e chiocciola è il parametro più critico nel funzionamento di questi attuatori. Mediante una prova sperimentale, è stata trovata una legge che, data pressione, velocità e fattore di servizio, stima la temperatura di esercizio. Di tale legge sperimentale è stata data un'interpretazione sulla base dei modelli teorici noti. Questo studio è stato condotto nell'ambito di un contratto di ricerca tra il DIEM e la Ognibene Meccanica S.r.l. di Bologna ed è pubblicato in [3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several diagnostic techniques are presented for the detection of electrical fault in induction motor variable speed drives. These techinques are developed taking into account the impact of the control system on machine variables and non stationary operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research is aimed at contributing to the identification of reliable fully predictive Computational Fluid Dynamics (CFD) methods for the numerical simulation of equipment typically adopted in the chemical and process industries. The apparatuses selected for the investigation, specifically membrane modules, stirred vessels and fluidized beds, were characterized by a different and often complex fluid dynamic behaviour and in some cases the momentum transfer phenomena were coupled with mass transfer or multiphase interactions. Firs of all, a novel modelling approach based on CFD for the prediction of the gas separation process in membrane modules for hydrogen purification is developed. The reliability of the gas velocity field calculated numerically is assessed by comparison of the predictions with experimental velocity data collected by Particle Image Velocimetry, while the applicability of the model to properly predict the separation process under a wide range of operating conditions is assessed through a strict comparison with permeation experimental data. Then, the effect of numerical issues on the RANS-based predictions of single phase stirred tanks is analysed. The homogenisation process of a scalar tracer is also investigated and simulation results are compared to original passive tracer homogenisation curves determined with Planar Laser Induced Fluorescence. The capability of a CFD approach based on the solution of RANS equations is also investigated for describing the fluid dynamic characteristics of the dispersion of organics in water. Finally, an Eulerian-Eulerian fluid-dynamic model is used to simulate mono-disperse suspensions of Geldart A Group particles fluidized by a Newtonian incompressible fluid as well as binary segregating fluidized beds of particles differing in size and density. The results obtained under a number of different operating conditions are compared with literature experimental data and the effect of numerical uncertainties on axial segregation is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis topic concerns the limitation of fault current high temperature superconducting (HTS), reported in scientific literature by the acronym HTSFCL (High Temperature Superconducting Fault Current Limiter) or more commonly with SFCL. These devices, at least in their ideal concept, turn on limiting short-circuit current only when the event of failure occurs, and are transparent to the network during normal operating conditions. The thesis is therefore focused on the study of diff�erent types of SFCL and results in the production of a new and original concept of superconducting limiter, called "DC Resistive SFCL". It has designed and patented in the Department of Electrical Engineering University of Bologna. The author and ing. Antonio Morandi (tutor) are the inventors. The objective of the thesis is therefore to propose a type of SFCL which may have the potential to be a viable economic solution as well as technique. The innovative concept of DC Resistive SFCL device, in fact, provides a DC operating conditions for the used superconducting (SC). It allows the use of cryogen-free solutions for cooling system and the exploitation of cheap SC materials (MgB2), both of reality are already commercially existing and indeed precluded by the types of SFCL which provides an AC operating conditions for the used SC material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was carried out in the context of a co-tutoring program between Centro Ceramico Bologna (Italy) and Instituto di Tecnologia Ceramica, Castellón de la Plana (Spain). The subject of the thesis is the synthesis of silver nanoparticles and at their likely decorative application in the productive process of porcelain ceramic tiles. Silver nanoparticles were chosen as a case study, because metal nanoparticles are thermally stable, and they have non-linear optical properties when nano-structured, and therefore they develop saturated colours. The nanoparticles were synthesized by chemical reduction in aqueous solution, a method chosen because of its reduced working steps and energy costs. Besides such a synthesis method uses non-expensive and non-toxic raw material. By adopting this synthesis technique, it was also possible to control the dimension and the final shape of the nanoparticles. Several syntheses were carried out during the research work, modifying the molecular weight of the reducing agent and/or the firing temperature, in order to evaluate the influence such parameters have on the Ag-nanoparticles formation. The syntheses were monitored with the use of UV-Vis spectroscopy and the average dimension as well as the morphology of the nanoparticles was analysed by SEM. From the spectroscopic data obtained from each synthesis, a kinetic study was completed, relating the progress of the reaction to the two variables (ie temperature and molecular weight of the reducing agent). The aim was finding equations that allow the establishing of a relationship between the operating conditions during the synthesis and the characteristics of the final product. The next step was finding the best method of synthesis for the decorative application. For such a purpose the amount of nanoparticles, their average particle size, the shape and the agglomeration are considered. An aqueous suspension containing the nanoparticles is then sprayed over the fired ceramic tiles and they are subsequently thermally treated in conditions similar to the industrial one. The colorimetric parameters of the obtained ceramic tiles were studied and the method proved successful, giving the ceramic tiles stable and intense colours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.