7 resultados para radar reflectivity-runoff model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Traditional procedures for rainfall-runoff model calibration are generally based on the fit of the individual values of simulated and observed hydrographs. It is used here an alternative option that is carried out by matching, in the optimisation process, a set of statistics of the river flow. Such approach has the additional, significant advantage to allow also a straightforward regional calibration of the model parameters, based on the regionalisation of the selected statistics. The minimisation of the set of objective functions is carried out by using the AMALGAM algorithm, leading to the identification of behavioural parameter sets. The procedure is applied to a set of river basins located in central Italy: the basins are treated alternatively as gauged and ungauged and, as a term of comparison, the results obtained with a traditional time-domain calibration is also presented. The results show that a suitable choice of the statistics to be optimised leads to interesting results in real world case studies as far as the reproduction of the different flow regimes is concerned.
Resumo:
L’invarianza spaziale dei parametri di un modello afflussi-deflussi può rivelarsi una soluzione pratica e valida nel caso si voglia stimare la disponibilità di risorsa idrica di un’area. La simulazione idrologica è infatti uno strumento molto adottato ma presenta alcune criticità legate soprattutto alla necessità di calibrare i parametri del modello. Se si opta per l’applicazione di modelli spazialmente distribuiti, utili perché in grado di rendere conto della variabilità spaziale dei fenomeni che concorrono alla formazione di deflusso, il problema è solitamente legato all’alto numero di parametri in gioco. Assumendo che alcuni di questi siano omogenei nello spazio, dunque presentino lo stesso valore sui diversi bacini, è possibile ridurre il numero complessivo dei parametri che necessitano della calibrazione. Si verifica su base statistica questa assunzione, ricorrendo alla stima dell’incertezza parametrica valutata per mezzo di un algoritmo MCMC. Si nota che le distribuzioni dei parametri risultano in diversa misura compatibili sui bacini considerati. Quando poi l’obiettivo è la stima della disponibilità di risorsa idrica di bacini non strumentati, l’ipotesi di invarianza dei parametri assume ancora più importanza; solitamente infatti si affronta questo problema ricorrendo a lunghe analisi di regionalizzazione dei parametri. In questa sede invece si propone una procedura di cross-calibrazione che viene realizzata adottando le informazioni provenienti dai bacini strumentati più simili al sito di interesse. Si vuole raggiungere cioè un giusto compromesso tra lo svantaggio derivante dall’assumere i parametri del modello costanti sui bacini strumentati e il beneficio legato all’introduzione, passo dopo passo, di nuove e importanti informazioni derivanti dai bacini strumentati coinvolti nell’analisi. I risultati dimostrano l’utilità della metodologia proposta; si vede infatti che, in fase di validazione sul bacino considerato non strumentato, è possibile raggiungere un buona concordanza tra le serie di portata simulate e osservate.
Resumo:
Tradizionalmente, l'obiettivo della calibrazione di un modello afflussi-deflussi è sempre stato quello di ottenere un set di parametri (o una distribuzione di probabilità dei parametri) che massimizzasse l'adattamento dei dati simulati alla realtà osservata, trattando parzialmente le finalità applicative del modello. Nel lavoro di tesi viene proposta una metodologia di calibrazione che trae spunto dell'evidenza che non sempre la corrispondenza tra dati osservati e simulati rappresenti il criterio più appropriato per calibrare un modello idrologico. Ai fini applicativi infatti, può risultare maggiormente utile una miglior rappresentazione di un determinato aspetto dell'idrogramma piuttosto che un altro. Il metodo di calibrazione che viene proposto mira a valutare le prestazioni del modello stimandone l'utilità nell'applicazione prevista. Tramite l'utilizzo di opportune funzioni, ad ogni passo temporale viene valutata l'utilità della simulazione ottenuta. La calibrazione viene quindi eseguita attraverso la massimizzazione di una funzione obiettivo costituita dalla somma delle utilità stimate nei singoli passi temporali. Le analisi mostrano come attraverso l'impiego di tali funzioni obiettivo sia possibile migliorare le prestazioni del modello laddove ritenute di maggior interesse per per le finalità applicative previste.
Resumo:
Snow plays a crucial role in the Earth's hydrological cycle and energy budget, making its monitoring necessary. In this context, ground-based radars and in situ instruments are essential thanks to their spatial coverage, resolution, and temporal sampling. Deep understanding and reliable measurements of snow properties are crucial over Antarctica to assess potential future changes of the surface mass balance (SMB) and define the contribution of the Antarctic ice sheet on sea-level rise. However, despite its key role, Antarctic precipitation is poorly investigated due to the continent's inaccessibility and extreme environment. In this framework, this Thesis aims to contribute to filling this gap by in-depth characterization of Antarctic precipitation at the Mario Zucchelli station from different points of view: microphysical features, quantitative precipitation estimation (QPE), vertical structure of precipitation, and scavenging properties. For this purpose, a K-band vertically pointing radar collocated with a laser disdrometer and an optical particle counter (OPC) were used. The radar probed the lowest atmospheric layers with high vertical resolution, allowing the first trusted measurement at only 105 m height. Disdrometer and OPC provided information on the particle size distribution and aerosol concentrations. An innovative snow classification methodology was designed by comparing the radar reflectivity (Ze) and disdrometer-derived reflectivity by means of DDA simulations. Results of classification were exploited in QPE through appropriate Ze-snow rate relationships. The accuracy of the resulting QPE was benchmarked against a collocated weighing gauge. Vertical radar profiles were also investigated to highlight hydrometeors' sublimation and growth processes. Finally, OPC and disdrometer data allowed providing the first-ever estimates of scavenging properties of Antarctic snowfall. Results presented in this Thesis give rise to advances in knowledge of the characteristics of snowfall in Antarctica, contributing to a better assessment of the SMB of the Antarctic ice sheet, the major player in the global sea-level rise.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.