4 resultados para radar metereologicomarshall palmerriflettività
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The research is part of a survey for the detection of the hydraulic and geotechnical conditions of river embankments funded by the Reno River Basin Regional Technical Service of the Region Emilia-Romagna. The hydraulic safety of the Reno River, one of the main rivers in North-Eastern Italy, is indeed of primary importance to the Emilia-Romagna regional administration. The large longitudinal extent of the banks (several hundreds of kilometres) has placed great interest in non-destructive geophysical methods, which, compared to other methods such as drilling, allow for the faster and often less expensive acquisition of high-resolution data. The present work aims to experience the Ground Penetrating Radar (GPR) for the detection of local non-homogeneities (mainly stratigraphic contacts, cavities and conduits) inside the Reno River and its tributaries embankments, taking into account supplementary data collected with traditional destructive tests (boreholes, cone penetration tests etc.). A comparison with non-destructive methodologies likewise electric resistivity tomography (ERT), Multi-channels Analysis of Surface Waves (MASW), FDEM induction, was also carried out in order to verify the usability of GPR and to provide integration of various geophysical methods in the process of regular maintenance and check of the embankments condition. The first part of this thesis is dedicated to the explanation of the state of art concerning the geographic, geomorphologic and geotechnical characteristics of Reno River and its tributaries embankments, as well as the description of some geophysical applications provided on embankments belonging to European and North-American Rivers, which were used as bibliographic basis for this thesis realisation. The second part is an overview of the geophysical methods that were employed for this research, (with a particular attention to the GPR), reporting also their theoretical basis and a deepening of some techniques of the geophysical data analysis and representation, when applied to river embankments. The successive chapters, following the main scope of this research that is to highlight advantages and drawbacks in the use of Ground Penetrating Radar applied to Reno River and its tributaries embankments, show the results obtained analyzing different cases that could yield the formation of weakness zones, which successively lead to the embankment failure. As advantages, a considerable velocity of acquisition and a spatial resolution of the obtained data, incomparable with respect to other methodologies, were recorded. With regard to the drawbacks, some factors, related to the attenuation losses of wave propagation, due to different content in clay, silt, and sand, as well as surface effects have significantly limited the correlation between GPR profiles and geotechnical information and therefore compromised the embankment safety assessment. Recapitulating, the Ground Penetrating Radar could represent a suitable tool for checking up river dike conditions, but its use has significantly limited by geometric and geotechnical characteristics of the Reno River and its tributaries levees. As a matter of facts, only the shallower part of the embankment was investigate, achieving also information just related to changes in electrical properties, without any numerical measurement. Furthermore, GPR application is ineffective for a preliminary assessment of embankment safety conditions, while for detailed campaigns at shallow depth, which aims to achieve immediate results with optimal precision, its usage is totally recommended. The cases where multidisciplinary approach was tested, reveal an optimal interconnection of the various geophysical methodologies employed, producing qualitative results concerning the preliminary phase (FDEM), assuring quantitative and high confidential description of the subsoil (ERT) and finally, providing fast and highly detailed analysis (GPR). Trying to furnish some recommendations for future researches, the simultaneous exploitation of many geophysical devices to assess safety conditions of river embankments is absolutely suggested, especially to face reliable flood event, when the entire extension of the embankments themselves must be investigated.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
In recent years, thanks to the technological advances, electromagnetic methods for non-invasive shallow subsurface characterization have been increasingly used in many areas of environmental and geoscience applications. Among all the geophysical electromagnetic methods, the Ground Penetrating Radar (GPR) has received unprecedented attention over the last few decades due to its capability to obtain, spatially and temporally, high-resolution electromagnetic parameter information thanks to its versatility, its handling, its non-invasive nature, its high resolving power, and its fast implementation. The main focus of this thesis is to perform a dielectric site characterization in an efficient and accurate way studying in-depth a physical phenomenon behind a recent developed GPR approach, the so-called early-time technique, which infers the electrical properties of the soil in the proximity of the antennas. In particular, the early-time approach is based on the amplitude analysis of the early-time portion of the GPR waveform using a fixed-offset ground-coupled antenna configuration where the separation between the transmitting and receiving antenna is on the order of the dominant pulse-wavelength. Amplitude information can be extracted from the early-time signal through complex trace analysis, computing the instantaneous-amplitude attributes over a selected time-duration of the early-time signal. Basically, if the acquired GPR signals are considered to represent the real part of a complex trace, and the imaginary part is the quadrature component obtained by applying a Hilbert transform to the GPR trace, the amplitude envelope is the absolute value of the resulting complex trace (also known as the instantaneous-amplitude). Analysing laboratory information, numerical simulations and natural field conditions, and summarising the overall results embodied in this thesis, it is possible to suggest the early-time GPR technique as an effective method to estimate physical properties of the soil in a fast and non-invasive way.