11 resultados para quasi-least
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.
Resumo:
This PhD thesis tries to show the impact of transport infrastructure in economic development in least developed countries and in particular in the case of Afghanistan. Some least developed countries during 1990 to 1999 experienced lack of investment in transportation. Lack of investment further increased the economic development gap between developed and least developed countries. Moreover, lack of literature and research in poor countries such as Afghanistan encouraged me to do my research in this country in order to unveil the problems, facing poor people who are living in inaccessible places and suffer from lack of economic opportunities and long term unemployment. This thesis shows the effect of inaccessibility and immobility in economic opportunities and basic social services in Afghanistan. This thesis is important because it covers the role of transport infrastructures at the moment that international community promised to rebuild the infrastructures of post conflict Afghanistan.
Resumo:
Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.
Resumo:
The aim of this PhD thesis was to study at a microscopic level different liquid crystal (LC) systems, in order to determine their physical properties, resorting to two distinct methodologies, one involving computer simulations, and the other spectroscopic techniques, in particular electron spin resonance (ESR) spectroscopy. By means of the computer simulation approach we tried to demonstrate this tool effectiveness for calculating anisotropic static properties of a LC material, as well as for predicting its behaviour and features. This required the development and adoption of suitable molecular models based on a convenient intermolecular potentials reflecting the essential molecular features of the investigated system. In particular, concerning the simulation approach, we have set up models for discotic liquid crystal dimers and we have studied, by means of Monte Carlo simulations, their phase behaviour and self-assembling properties, with respect to the simple monomer case. Each discotic dimer is described by two oblate GayBerne ellipsoids connected by a flexible spacer, modelled by a harmonic "spring" of three different lengths. In particular we investigated the effects of dimerization on the transition temperatures, as well as on the characteristics of molecular aggregation displayed and the relative orientational order. Moving to the experimental results, among the many experimental techniques that are typically employed to evaluate LC system distinctive features, ESR has proved to be a powerful tool in microscopic scale investigation of the properties, structure, order and dynamics of these materials. We have taken advantage of the high sensitivity of the ESR spin probe technique to investigate increasingly complex LC systems ranging from devices constituted by a polymer matrix in which LC molecules are confined in shape of nano- droplets, as well as biaxial liquid crystalline elastomers, and dimers whose monomeric units or lateral groups are constituted by rod-like mesogens (11BCB). Reflection-mode holographic-polymer dispersed liquid crystals (H-PDLCs) are devices in which LCs are confined into nanosized (50-300 nm) droplets, arranged in layers which alternate with polymer layers, forming a diffraction grating. We have determined the configuration of the LC local director and we have derived a model of the nanodroplet organization inside the layers. Resorting also to additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross-section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi- monodomain aligned along the nanodroplet long axis. The results suggest that the molecular organization is dictated mainly by the confinement, explaining, at least in part, the need for switching voltages significantly higher and the observed faster turn-off times in H-PDLCs compared to standard PDLC devices. Liquid crystal elastomers consist in cross-linked polymers, in which mesogens represent the monomers constituting the main chain or the laterally attached side groups. They bring together three important aspects: orientational order in amorphous soft materials, responsive molecular shape and quenched topological constraints. In biaxial nematic liquid crystalline elastomers (BLCEs), two orthogonal directions, rather than the one of normal uniaxial nematic, can be controlled, greatly enhancing their potential value for applications as novel actuators. Two versions of a side-chain BLCEs were characterized: side-on and end-on. Many tests have been carried out on both types of LCE, the main features detected being the lack of a significant dynamical behaviour, together with a strong permanent alignment along the principal director, and the confirmation of the transition temperatures already determined by DSC measurements. The end-on sample demonstrates a less hindered rotation of the side group mesogenic units and a greater freedom of alignment to the magnetic field, as already shown by previous NMR studies. Biaxial nematic ESR static spectra were also obtained on the basis of Molecular Dynamics generated biaxial configurations, to be compared to the experimentally determined ones, as a mean to establish a possible relation between biaxiality and the spectral features. This provides a concrete example of the advantages of combining the computer simulation and spectroscopic approaches. Finally, the dimer α,ω-bis(4'-cyanobiphenyl-4-yl)undecane (11BCB), synthesized in the "quest" for the biaxial nematic phase has been analysed. Its importance lies in the dimer significance as building blocks in the development of new materials to be employed in innovative technological applications, such as faster switching displays, resorting to the easier aligning ability of the secondary director in biaxial phases. A preliminary series of tests were performed revealing the population of mesogenic molecules as divided into two groups: one of elongated straightened conformers sharing a common director, and one of bent molecules, which display no order, being equally distributed in the three dimensions. Employing this model, the calculated values show a consistent trend, confirming at the same time the transition temperatures indicated by the DSC measurements, together with rotational diffusion tensor values that follow closely those of the constituting monomer 5CB.
Resumo:
Le musiche “popolaresche” urbane, in genere trascurate nella letteratura etnomusicologica, sono state quasi completamente ignorate nel caso della Romania. Il presente studio si propone di colmare almeno in parte questa lacuna, indagando questo fenomeno musicale nella Bucarest degli anni Trenta e Quaranta del Novecento. Le musiche esaminate sono tuttavia inserite entro una cornice storica più ampia, che data a partire dalla fine del XVIII secolo, e messe in relazione con alcune produzioni di origine rurale che con queste hanno uno stretto rapporto. Il caso di Maria Lătărețu (1911-1972) si è rivelato particolarmente fecondo in questo senso, dal momento che la cantante apparteneva ad entrambi i versanti musicali, rurale e urbano, e nepadroneggiava con disinvoltura i rispettivi repertori. Dopo il suo trasferimento nella capitale, negli anni Trenta, è diventata una delle figure di maggior spicco di quel fenomeno noto come muzică populară (creazione musicale eminentemente urbana e borghese con radici però nel mondo delle musiche rurali). L’analisi del repertorio (o, per meglio dire, dei due repertori) della Lătărețu, anche nel confronto con repertori limitrofi, ha permesso di comprendere più da vicino alcuni dei meccanismi musicali alla base di questa creazione. Un genere musicale che non nasce dal nulla nel dopo-guerra, ma piuttosto continua una tradizione di musica urbana, caratterizzata in senso locale, ma influenzata dal modello della canzone europea occidentale, che data almeno dagli inizi del Novecento. Attraverso procedimenti in parte già collaudati da compositori colti che sin dal XIX secolo, in Romania come altrove, si erano cimentati con la creazione di melodie in stile popolare o nell’armonizzazione di musiche di provenienza contadina, le melodie rurali nel bagaglio della cantante venivano trasformate in qualcosa di inedito. Una trasformazione che, come viene dimostrato efficacemente nell’ultimo capitolo, non investe solo il livello superficiale, ma coinvolge in modo profondo la sintassi musicale.
Resumo:
Small-scale dynamic stochastic general equilibrium have been treated as the benchmark of much of the monetary policy literature, given their ability to explain the impact of monetary policy on output, inflation and financial markets. One cause of the empirical failure of New Keynesian models is partially due to the Rational Expectations (RE) paradigm, which entails a tight structure on the dynamics of the system. Under this hypothesis, the agents are assumed to know the data genereting process. In this paper, we propose the econometric analysis of New Keynesian DSGE models under an alternative expectations generating paradigm, which can be regarded as an intermediate position between rational expectations and learning, nameley an adapted version of the "Quasi-Rational" Expectatations (QRE) hypothesis. Given the agents' statistical model, we build a pseudo-structural form from the baseline system of Euler equations, imposing that the length of the reduced form is the same as in the `best' statistical model.
Resumo:
The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.
Resumo:
This work aims to provide a theoretical examination of three recently created bodies of the United Nations mandated to investigate the alleged international crimes committed in Syria (IIIM), Iraq (UNITAD) and Myanmar (IIMM). Established as a compromise solution in the paralysis of international criminal jurisdictions, these essentially overlapping entities have been depicted as a ‘new generation’ of UN investigative mechanisms. While non-judicial in nature, they depart indeed from traditional commissions of inquiry in several respects due to their increased criminal or ‘quasi-prosecutorial’ character. After clarifying their legal basis and different mandating authorities, a comparative institutional analysis is thus carried out in order to ascertain whether these ‘mechanisms’ can be said to effectively represent a new institutional model. Through an in-depth assessment of their mandates, the thesis is also intended to outline both the strengths and the criticalities of these organs. Given their aim to facilitate criminal proceedings by sharing information and case files, it is suggested that more attention shall be paid to the position of the person under investigation. To this end, some proposals are made in order to enhance the mechanisms’ frameworks, especially from the angle of procedural safeguards. As a third aspect, the cooperation with judicial authorities is explored, in order to shed light on the actors involved, the relevant legal instruments and the possible obstacles, in particular from a human rights perspective. Ultimately, drawing from the detected issues, the thesis seeks to identify some lessons learned which could be taken into account in case of creation of new ad hoc investigative mechanisms or of a permanent institution of this kind.
Resumo:
Decarbonization of maritime transport requires immediate action. In the short term, ship weather routing can provide greenhouse gas emission reductions, even for existing ships and without retrofitting them. Weather routing is based on making optimal use of both envi- ronmental information and knowledge about vessel seakeeping and performance. Combining them at a state-of-the-art level and making use of path planning in realistic conditions can be challenging. To address these topics in an open-source framework, this thesis led to the development of a new module called bateau , and to its combination with the ship routing model VISIR. bateau includes both hull geometry and propulsion modelling for various vessel types. It has two objectives: to predict the sustained speed in a seaway and to estimate the CO2 emission rate during the voyage. Various semi-empirical approaches were used in bateau to predict the ship hydro- and aerodynamical resistance in both head and oblique seas. Assuming that the ship sails at a constant engine load, the involuntary speed loss due to waves was estimated. This thesis also attempted to clarify the role played by the actual representation of the sea state. In particular, the influence of the wave steepness parameter was assessed. For dealing with ships with a greater superstructure, the wind added resistance was also estimated. Numerical experiments via bateau were conducted for both a medium and a large-size container ships, a bulk-carrier, and a tanker. The simulations of optimal routes were carried out for a feeder containership during voyages in the North Indian Ocean and in the South China Sea. Least-CO2 routes were compared to the least-distance ones, assessing the relative CO2 savings. Analysis fields from the Copernicus Marine Service were used in the numerical experiments.