6 resultados para quality control management
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.
Resumo:
This thesis presents SEELF (Sustainable EEL fishery) Index, a methodology for evaluation of European eel (Anguilla anguilla) for the implementation of an effective Eel Management Plan, as defined by EU Regulation No.1100/2007. SEELF uses internal and external indices, age and blood parameters, and selects suitable specimen for restocking; it is also a reliable tool for eel stock management. In fact, SEELF Index, was developed in two versions: SEELF A, to be used in field operations (catch&release, eel status monitoring) and SEELF B to be used for quality control (food production) and research (eel status monitoring). Health status was evaluated also by biomarker analysis (ChE), and data were compared with age of eel. Age determination was performed with otolith reading and fish scale reading and a calibration between the two methods was possible. The study area was the Comacchio lagoon, a brackish coastal lagoon in Italy, well known as an example of suitable environment for eel fishery, where the capability to use the local natural resources has long been a key factor for a successful fishery management. Comacchio lagoon is proposed as an area where an effective EMP can be performed, in agreement with the main features (management of basins, reduction of mortality due to predators,etc.) highlighted for designation of European Restocking Area (ERA). The ERA is a new concept, proposed as a pillar of a new strategy on eel management and conservation. Furthermore, the features of ERAs can be useful in the framework of European Scale Eel Management Plan (ESEMP), proposed as a European scale implementation of EMP, providing a more effectiveness of conservation measures for eel management.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.
Resumo:
This Ph.D. project aimed to the development and improvement of analytical solutions for control of quality and authenticity of virgin olive oils. According to this main objective, different research activities were carried out: concerning the quality control of olive oil, two of the official parameters defined by regulations (free acidity and fatty acid ethyl esters) were taken into account, and more sustainable and easier analytical solutions were developed and validated in-house. Regarding authenticity, two different issues were faced: verification of the geographical origin of extra virgin (EVOOs) and virgin olive oils (VOOs), and assessment of soft-deodorized oils illegally mixed with EVOOs. About fatty acid ethyl esters, a revised method based on the application of off-line HPLC-GC-FID (with PTV injector), revising both the preparative phase and the GC injector required in the official method, was developed. Next, the method was in-house validated evaluating several parameters. Concerning free acidity, a portable system suitable for in-situ measurements of VOO free acidity was developed and in-house validated. Its working principle is based on the estimation of the olive oil free acidity by measuring the conductance of an emulsion between a hydro-alcoholic solution and the sample to be tested. The procedure is very quick and easy and, therefore, suitable for people without specific training. Another study developed during the Ph.D. was about the application of flash gas chromatography for volatile compounds analysis, combined with untargeted chemometric data elaborations, for discrimination of EVOOs and VOOs of different geographical origin. A set of 210 samples coming from different EU member states and extra-EU countries were collected and analyzed. Data were elaborated applying two different classification techniques, one linear (PLS-DA) and one non-linear (ANN). Finally, a preliminary study about the application of GC-IMS (Gas Chromatograph - Ion Mobility Spectrometer) for assessment of soft-deodorized olive oils was carried out.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.