2 resultados para q-Transforms
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work we introduce an analytical approach for the frequency warping transform. Criteria for the design of operators based on arbitrary warping maps are provided and an algorithm carrying out a fast computation is defined. Such operators can be used to shape the tiling of time-frequency plane in a flexible way. Moreover, they are designed to be inverted by the application of their adjoint operator. According to the proposed mathematical model, the frequency warping transform is computed by considering two additive operators: the first one represents its nonuniform Fourier transform approximation and the second one suppresses aliasing. The first operator is known to be analytically characterized and fast computable by various interpolation approaches. A factorization of the second operator is found for arbitrary shaped non-smooth warping maps. By properly truncating the operators involved in the factorization, the computation turns out to be fast without compromising accuracy.
Resumo:
The major index has been deeply studied from the early 1900s and recently has been generalized in different directions, such as the case of labeled forests and colored permutations. In this thesis we define new types of labelings for forests in which the labels are colored integers. We extend the definition of the flag-major index for these labelings and we present an analogue of well known major index hook length formulas. Finally, this study (which has just apparently a simple combinatoric nature) allows us to show a notion of duality for two particular families of groups obtained from the product G(r,n)×G(r,m).