8 resultados para pyrophosphate phosphofructose 1 kinase
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.
Resumo:
Phospholipase C (PLC) has been known to be a key effector protein in signal transduction pathway for cell proliferation and differentiation. Studies on signalling through the insulin/IGF-1 receptors in muscle differentiation have revealed that PLCγ1 is involved during this process and that both mRNA and protein levels were increased during myogenesis. Based on increasing signal transduction pathways that required both PLCγ1 and PKCε, we investigated its role in insulin stimulation of skeletal muscle differentiation. The precise effects of insulin on specific PKC isoforms are as yet unknown. Insulin stimulation produced a gradual increase in PKCε expression and activation of PKCε through skeletal muscle differentiation. By immunoprecipitation we have demonstrated that endogenous PLCγ1 and PKCε belong to the same immunocomplex that increase during through myogenic differentiation. Furthermore, the SH domain of PLCγ1 is involved in the protein complex and that its confine to the Golgi membrane. PLCγ1 has been involved in cyclin D3 up-regulation. By overexpression and silencing approach we have evidenced that PKCε modulate the espression of cyclin D3; the kinase dead form of PKCε doesn’t maintain the same ability. Using a reporter hGH vector we proved that PKCε acts at transcriptional level by affecting the -37 region of cyclin D3 promoter, as has been described previous for PLCγ1. In summary this data proved the involvement of PKCε in the regulation of cyclin D3 expression, together with PLCγ1.
Resumo:
The nuclear signaling that is triggered in response to DNA damage entails the recruitment and assembly of repair proteins and the induction of genes involved in the activation of cell cycle checkpoint, apoptosis or senescence. The extensive changes in chromatin structure underlying these processes suggest that chromatin-modifying enzymes could be relevant targets of DNA damage-activated signaling. The acetyltransferases p300 and CBP participate in DNA damage-activated responses, including local histone hyperacetylation, cell cycle regulation, and co-activation of DNA damage activated proteins, such as p53, p73 and BRCA1. However, the link between DNA damage and p300/CBP activation has not been identified.We have detected p300 tyrosine phosphorylation in response to DNA damage. We show that the DNA damage-activated cAbl tyrosine kinase enters the nuclei of cells exposed to genotoxic agents and phosphorylates p300 on a tyrosine residue within the bromodomain that is conserved in p300, CBP and many other bromodomain-containing proteins. Antibodies against tyrosine phosphorylated p300/CBP show a DNA damage-inducible nuclear staining, suggesting that p300 tyrosine phosphorylation is an event linking DNA damage and chromatin modifications.
Resumo:
The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis-inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans (Falivelli et al. 2013).
Resumo:
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. This work considers the pharmacological response in GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. We analyzed polymorphisms influence on treatment outcome, keeping in consideration SNPs in genes involved in drug transport and folate pathway. Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary mutation is considered the main player in GIST development and progression. To this purpose we analyzed the secondary mutations to better understand how these are involved in imatinib resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a subset of progressive patients. KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the definition of biomarkers of imatinib response in addition to the use of tumor genotype. Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as initial response, time to progression and acquired resistance. At the same time it is becoming evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient variability. Genetic polymorphisms in transporters and metabolism may affect the activity or stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide further insight into imatinib response/resistance mechanisms.
Resumo:
In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients
Resumo:
In 2017, Chronic Respiratory Diseases accounted for almost four million deaths worldwide. Unfortunately, current treatments are not definitive for such diseases. This unmet medical need forces the scientific community to increase efforts in the identification of new therapeutic solutions. PI3K delta plays a key role in mechanisms that promote airway chronic inflammation underlying Asthma and COPD. The first part of this project was dedicated to the identification of novel PI3K delta inhibitors. A first SAR expansion of a Hit, previously identified by a HTS campaign, was carried out. A library of 43 analogues was synthesised taking advantage of an efficient synthetic approach. This allowed the identification of an improved Hit of nanomolar enzymatic potency and moderate selectivity for PI3K delta over other PI3K isoforms. However, this compound exhibited low potency in cell-based assays. Low cellular potency was related to sub optimal phys-chem and ADME properties. The analysis of the X-ray crystal structure of this compound in human PI3K delta guided a second tailored SAR expansion that led to improved cellular potency and solubility. The second part of the thesis was focused on the rational design and synthesis of new macrocyclic Rho-associated protein kinases (ROCKs) inhibitors. Inhibition of these kinases has been associated with vasodilating effects. Therefore, ROCKs could represent attractive targets for the treatment of pulmonary arterial hypertension (PAH). Known ROCK inhibitors suffer from low selectivity across the kinome. The design of macrocyclic inhibitors was considered a promising strategy to obtain improved selectivity. Known inhibitors from literature were evaluated for opportunities of macrocyclization using a knowledge-based approach supported by Computer Aided Drug Design (CADD). The identification of a macrocyclic ROCK inhibitor with enzymatic activity in the low micro molar range against ROCK II represented a promising result that validated this innovative approach in the design of new ROCKs inhibitors.
Resumo:
The data presented in this thesis was generated using molecular biology, protein chemistry and X-ray crystallography techniques. However, while the methodologies employed are essentially the same, the research work presented here refers to two different proteins, which are part of different research projects in the laboratory. For this reason, the content of this thesis is divided in two independent parts, each provided with an introduction and a general overview of the research topic and state-ofthe- art, a materials and methods section discussing the techniques used and the protocols followed, and a section where the results are presented and discussed in detail. The first half of the thesis deals with the structural characterization of the complex between human E-cadherin and three different small molecule potential inhibitors identified via a fragment-based drug discovery (FBDD) screening campaign that was conducted using a library of commercially available small fluorinated chemical fragments. For this screening phase, we used 19F-NMR as readout. The NMR experiments were done by our collaborator Dr. Marina Veronesi at the D3 PharmaChemistry division of the Italian Institute of Technology (IIT) in Genova (Italy). Functional cell adhesion assays to validate the inhibitory effects of the fragments thus identified were carried out in collaboration with Prof. Frédéric André at the University of Marseille (France). The second half of the thesis describes the structural characterization of Plasmodium falciparum Choline Kinase (PfChoK), an important pharmaceutical target in the fight against malaria, as well as the biochemical characterization of a library of potential inhibitors of PfChoK. These inhibitors were synthetized in the group of Prof. Luisa Carlota López-Cara at the Department of Pharmaceutical and Organic Chemistry of the University of Granada (Spain) in the framework of an ongoing collaboration between the two groups.