13 resultados para pulmonary-function changes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: Lymphangioleiomyomatosis (LAM), a rare progressive disease, is characterized by the proliferation of abnormal smooth muscle cells (LAM cells) in the lung, which leads to cystic parenchymal destruction and progressive respiratory failure. Estrogen receptors are present in LAM cells. LAM affects almost exclusively women of childbearing age. These findings, along with reports of disease progression during pregnancy or treatment with exogenous estrogens, have led to the assumption that hormonal factors play an important role in the pathogenesis of LAM. So, various therapies aim at preventing estrogen receptors (ER) by lowering circulating estrogen levels, by trying to block ER activity, or by attempting to lower ER expression in LAM. Prior experience have yielded conflicting results. Objective: The goal of this study was to evaluate, retrospectively, the effect of estrogen suppression in 21 patients with LAM. Design: We evaluated hormonal assays, pulmonary function tests and gas-exchange at baseline and after 12, 24 and 36 months after initiating hormonal manipulation. Results: The mean yearly rates of decline in FEV1 and DLCO are lower than those observed in prior studies and just DLCO decline was statistically significant. We also found an improvement of mean value of FVC and PaO2. Conclusions: Estrogen suppression appears to prevent decline in lung function in LAM.
Resumo:
Introduction: In the last years cardiac surgery for congenital heart disease (CHD) reduced dramatically mortality modifying prognosis, but, at the same time, increased morbidity in this patient population. Respiratory and cardiovascular systems are strictly anatomically and functionally connected, so that alterations of pulmonary hemodynamic conditions modify respiratory function. While very short-term alterations of respiratory mechanics after surgery were investigated by many authors, not as much works focused on long-term changes. In these subjects rest respiratory function may be limited by several factor: CHD itself (fetal pulmonary perfusion influences vascular and alveolar development), extracorporeal circulation (CEC), thoracotomy and/or sternotomy, rib and sternal contusions, pleural adhesions and pleural fibrosis, secondary to surgical injury. Moreover inflammatory cascade, triggered by CEC, can cause endothelial damage and compromise gas exchange. Aims: The project was conceived to 1) determine severity of respiratory functional impairement in different CHD undergone to surgical correction/palliation; 2) identify the most and the least CHD involved by pulmonary impairement; 3) find a correlation between a specific hemodynamic condition and functional anomaly, and 4) between rest respiratory function and cardiopulmonary exercise test. Materials and methods: We studied 113 subjects with CHD undergone to surgery, and distinguished by group in accord to pulmonary blood flow (group 0: 28 pts with normal pulmonary flow; group 1: 22 pts with increased flow; group 2: 43 pts with decreased flow; group 3: 20 pts with total cavo-pulmonary anastomosis-TCPC) followed by the Pediatric Cardiology and Cardiac Surgery Unit, and we compare them to 37 age- and sex-matched healthy subjects. In Pediatric Pulmonology Unit all pts performed respiratory function tests (static and dynamic volumes, flow/volume curve, airway resistances-raw- and conductance-gaw-, lung diffusion of CO-DLCO- and DLCO/alveolar volume), and CHD pts the same day had cardiopulmonary test. They all were examined and had allergological tests, and respiratory medical history. Results: restrictive pattern (measured on total lung capacity-TLC- and vital capacity-VC) was in all CHD groups, and up to 45% in group 2 and 3. Comparing all groups, we found a significant difference in TLC between healthy and group 2 (p=0.001) and 3 (p=0.004), and in VC between group 2 and healthy (p=0.001) and group 1(p=0.034). Inspiratory capacity (IC) was decreased in group 2 related to healthy (p<0.001) and group 1 (p=0.037). We showed a direct correlation between TLC and VC with age at surgery (p=0.01) and inverse with number of surgical interventions (p=0.03). Reduced FEV1/FVC ratio, Gaw and increased Raw were mostly present in group 3. DLCO was impaired in all groups, but up to 80% in group 3 and 50% in group 2; when corrected for alveolar volume (DLCO/VA) reduction persisted in group 3 (20%), 2 (6.2%) and 0 (7.1%). Exercise test was impaired in all groups: VO2max and VE markedly reduced in all but especially in group 3, and VE/VCO2 slope, marker of ventilatory response to exercise, is increased (<36) in 62.5% of group 3, where other pts had anyway value>32. Comparing group 3 and 2, the most involved categories, we found difference in VO2max and VE/VCO2 slope (respectively p=0.02 and p<0.0001). We evidenced correlation between rest and exercise tests, especially in group 0 (between VO2max and FVC, FEV1, VC, IC; inverse relation between VE/VCO2slope and FVC, FEV1 and VC), but also in group 1 (VO2max and IC), group 2 (VO2max and FVC and FEV1); never in group 3. Discussion: According with literature, we found a frequent impairment of rest pulmonary function in all groups, but especially in group 2 and 3. Restrictive pattern was the most frequent alteration probably due to compromised pulmonary (vascular and alveolar) development secondary to hypoperfusion in fetal and pre-surgery (and pre-TCPC)life. Parenchymal fibrosis, pleural adhesions and thoracic deformities can add further limitation, as showed by the correlation between group 3 and number of surgical intervention. Exercise tests were limited, particularly in group 3 (complex anatomy and lost of chronotropic response), and we found correlations between rest and exercise tests in all but group 3. We speculate that in this patients hemodynamic exceeds respiratory contribution, though markedly decreased.
Resumo:
The aim of this study is to evaluate the pulmonary function in subjects with diagnosis of Turner Syndrome, in charge at the Syndromology Ward of the Paediatric Clinic of S.Orsola-Malpighi hospital. There are very few datas about lung function in patients with Turner syndrome’s genotype and phenotype in medical literature. Since the thorax of these subjects have peculiar anatomic shape (as “shield” or “overturned triangle”), we presupposed that these subjects could have also a peculiar respiratory function. Moreover we look for the possibility of correlation between pulmonary function and estroprogestinic replacement therapy and/or growth hormone (GH) replacement therapy. Material and methods: we studied 48 patients, with diagnosis of Turner Syndrome; they all made spirometry voluntarily and, when capable, also plethismografy. Results: - the parametres of pulmonary function are a little higher of the predicted values for age and sex but they are a little lower if they're corrected for each patient’s ideal high and weight: so we can conclude that in Turner Syndrme subjects pulmonary function is normal; -there’s not a statistically significant correlation between pulmonary function and GH therapy; -there’s not a statistically significant correlation between GH therapy’s length and pulmonary function except for Total Lung Capacity which increases with the number of years of GH therapy; - there’s not a statistically significant correlation between pulmonary function and estroprogestinic replacement herapy.
Resumo:
Obbiettivo. Analizzare la funzionalità polmonare e diaframmatica dopo interventi di plicatura del diaframma con rete di rinforzo peri-costale eseguiti per relaxatio e riparazione di ernia transdiaframmatica cronica mediante riduzione e sutura diretta. Metodi. Dal 1996 al 2010, 10 pazienti con relaxatio unilaterale del diaframma e 6 pazienti con ernia transdiaframmatica cronica misconosciuta sono stati sottoposti a chirurgia elettiva. Gli accertamenti preoperatori e al follow-up di 12 mesi includevano prove di funzionalità respiratoria, misura della pressione massimale inspiratoria alla bocca in clino e ortostatismo, emogasanlisi, TC del torace e dispnea score. Risultati. I pazienti dei due gruppi non differivano in termini di funzionalità respiratoria preoperatoria nè di complicanze postoperatorie; al follow-up a 12 mesi il gruppo Eventrazione mostrava un significativo aumento del FEV1% (+18,2 – p<0.001), FVC% (+12,8 – p<0.001), DLCO% (+6,84 – p=0,04) e pO2 (+9,8 mmHg – p<0.001). Al contrario nrl gruppo Ernia solo il miglioramento della pO2 era significativo (+8.3 – p=0.04). Sebbene la massima pressione inspiratoria (PImax) fosse aumentata in entrambi i gruppi al follow-up, i pazienti operati per ernia mostravano un miglioramento limitato con persistente caduta significativa della PImax dall’ortostatismo al clinostatismo (p<0.001). Il Transitional dyspnoea score è stato concordante con tali miglioramenti pur senza differenze significative tra i due gruppi. La TC del torace ha evidenziato una sopraelevazione dell’emidiaframma suturato, senza recidiva di ernia, mentre i pazienti sottoposti a plicatura hanno mantenuto l’ipercorrezione. Conclusioni. L’utilizzo di un rinforzo protesico è sicuro e sembra assicurare risultati funzionali migliori a distanza in termini di flussi respiratori e di movimento paradosso del diaframma (valutato mediante PImax). Lacerazioni estese del diaframma coinvolgenti le branche principali di suddivisione del nervo frenico si associano verosimilmente a una relaxatio che può quindi ridurre il guadagno funzionale a lungo termine se non adeguatamente trattata mediante l’utilizzo di un rinforzo protesico.
Resumo:
The study of optic flow on postural control may explain how self-motion perception contributes to postural stability in young males and females and how such function changes in the old falls risk population. Study I: The aim was to examine the optic flow effect on postural control in young people (n=24), using stabilometry and surface-electromyography. Subjects viewed expansion and contraction optic flow stimuli which were presented full field, in the foveral or in the peripheral visual field. Results showed that optic flow stimulation causes an asymmetry in postural balance and a different lateralization of postural control in men and women. Gender differences evoked by optic flow were found both in the muscle activity and in the prevalent direction of oscillation. The COP spatial variability was reduced during the view of peripheral stimuli which evoked a clustered prevalent direction of oscillation, while foveal and random stimuli induced non-distributed directions. Study II was aimed at investigating the age-related mechanisms of postural stability during the view of optic flow stimuli in young (n=17) and old (n=19) people, using stabilometry and kinematic. Results showed that old people showed a greater effort to maintain posture during the view of optic flow stimuli than the young. Elderly seems to use the head stabilization on trunk strategy. Visual stimuli evoke an excitatory input on postural muscles, but the stimulus structure produces different postural effects. Peripheral optic flow stabilizes postural sway, while random and foveal stimuli provoke larger sway variability similar to those evoked in baseline. Postural control uses different mechanisms within each leg to produce the appropriate postural response to interact with extrapersonal environment. Ageing reduce the effortlessness to stabilize posture during optic flow, suggesting a neuronal processing decline associated with difficulty integrating multi-sensory information of self-motion perception and increasing risk of falls.
Resumo:
Introduction The “eversion” technique for carotid endarterectomy (e-CEA), that involves the transection of the internal carotid artery at the carotid bulb and its eversion over the atherosclerotic plaque, has been associated with an increased risk of postoperative hypertension possibly due to a direct iatrogenic damage to the carotid sinus fibers. The aim of this study is to assess the long-term effect of the e-CEA on arterial baroreflex and peripheral chemoreflex function in humans. Methods A retrospective review was conducted on a prospectively compiled computerized database of 3128 CEAs performed on 2617 patients at our Center between January 2001 and March 2006. During this period, a total of 292 patients who had bilateral carotid stenosis ≥70% at the time of the first admission underwent staged bilateral CEAs. Of these, 93 patients had staged bilateral e-CEAs, 126 staged bilateral s- CEAs and 73 had different procedures on each carotid. CEAs were performed with either the eversion or the standard technique with routine Dacron patching in all cases. The study inclusion criteria were bilateral CEA with the same technique on both sides and an uneventful postoperative course after both procedures. We decided to enroll patients submitted to bilateral e-CEA to eliminate the background noise from contralateral carotid sinus fibers. Exclusion criteria were: age >70 years, diabetes mellitus, chronic pulmonary disease, symptomatic ischemic cardiac disease or medical therapy with b-blockers, cardiac arrhythmia, permanent neurologic deficits or an abnormal preoperative cerebral CT scan, carotid restenosis and previous neck or chest surgery or irradiation. Young and aged-matched healthy subjects were also recruited as controls. Patients were assessed by the 4 standard cardiovascular reflex tests, including Lying-to-standing, Orthostatic hypotension, Deep breathing, and Valsalva Maneuver. Indirect autonomic parameters were assessed with a non-invasive approach based on spectral analysis of EKG RR interval, systolic arterial pressure, and respiration variability, performed with an ad hoc software. From the analysis of these parameters the software provides the estimates of spontaneous baroreflex sensitivity (BRS). The ventilatory response to hypoxia was assessed in patients and controls by means of classic rebreathing tests. Results A total of 29 patients (16 males, age 62.4±8.0 years) were enrolled. Overall, 13 patients had undergone bilateral e-CEA (44.8%) and 16 bilateral s-CEA (55.2%) with a mean interval between the procedures of 62±56 days. No patient showed signs or symptoms of autonomic dysfunction, including labile hypertension, tachycardia, palpitations, headache, inappropriate diaphoresis, pallor or flushing. The results of standard cardiovascular autonomic tests showed no evidence of autonomic dysfunction in any of the enrolled patients. At spectral analysis, a residual baroreflex performance was shown in both patient groups, though reduced, as expected, compared to young controls. Notably, baroreflex function was better maintained in e-CEA, compared to standard CEA. (BRS at rest: young controls 19.93 ± 2.45 msec/mmHg; age-matched controls 7.75 ± 1.24; e-CEA 13.85 ± 5.14; s-CEA 4.93 ± 1.15; ANOVA P=0.001; BRS at stand: young controls 7.83 ± 0.66; age-matched controls 3.71 ± 0.35; e-CEA 7.04 ± 1.99; s-CEA 3.57 ± 1.20; ANOVA P=0.001). In all subjects ventilation (VÝ E) and oximetry data fitted a linear regression model with r values > 0.8. Oneway analysis of variance showed a significantly higher slope both for ΔVE/ΔSaO2 in controls compared with both patient groups which were not different from each other (-1.37 ± 0.33 compared with -0.33±0.08 and -0.29 ±0.13 l/min/%SaO2, p<0.05, Fig.). Similar results were observed for and ΔVE/ΔPetO2 (-0.20 ± 0.1 versus -0.01 ± 0.0 and -0.07 ± 0.02 l/min/mmHg, p<0.05). A regression model using treatment, age, baseline FiCO2 and minimum SaO2 achieved showed only treatment as a significant factor in explaining the variance in minute ventilation (R2= 25%). Conclusions Overall, we demonstrated that bilateral e-CEA does not imply a carotid sinus denervation. As a result of some expected degree of iatrogenic damage, such performance was lower than that of controls. Interestingly though, baroreflex performance appeared better maintained in e-CEA than in s-CEA. This may be related to the changes in the elastic properties of the carotid sinus vascular wall, as the patch is more rigid than the endarterectomized carotid wall that remains in the e-CEA. These data confirmed the safety of CEA irrespective of the surgical technique and have relevant clinical implication in the assessment of the frequent hemodynamic disturbances associated with carotid angioplasty stenting.
Resumo:
Asthma and chronic obstructive pulmonary disease (COPD) are two distinct lung diseases with distinctive clinical and inflammatory features. A proportion of asthmatic patients experience a fixed airflow obstruction that persists despite optimal pharmacologic treatment for reasons that are still largely unknown. We found that patients with asthma and COPD sharing a similar fixed airflow obstruction have an increased lung function decline and frequency of exacerbations. Nevertheless, the decline in lung function is associated with specific features of the underlying inflammation. Airway inflammation increases during asthma exacerbation and disease severity. Less is known about the correlations between symptoms and airway inflammation in COPD patients. We found that there is no correlation between symptoms and lung function in COPD patients. Nevertheless symptoms changes are associated with specific inflammatory changes: cough is associated with an increase of sputum neutrophils in COPD, dyspnoea is associated with an increase of eosinophils. The mechanisms of this correlation remain unknown. Neutrophils inflammation is associated with bacterial colonization in stable COPD. Is not known whether inhaled corticosteroids might facilitate bacterial colonization in COPD patients. We found that the use of inhaled corticosteroids in COPD patients is associated with an increase of airway bacterial load and with an increase of airway pathogen detection. Bacterial and viral infections are the main causes of COPD and asthma exacerbations. Impaired innate immune responses to rhinovirus infections have been described in adult patients with atopic asthma. Whether this impaired immune condition is present early in life and whether is modulated by a concomitant atopic condition is currently unknown. We found that deficient innate immune responses to rhinovirus infection are already present early in life in atopic patients without asthma and in asthmatic subjects. These findings generalize the scenario of increased susceptibility to viral infections to other Th2 oriented conditions.
Resumo:
Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Allergies are a complex of symptoms derived from altered IgE-mediated reactions of the immune system towards substances known as allergens. Allergic sensibilization can be of food or respiratory origin and, in particular, apple and hazelnut allergens have been identified in pollens or fruits. Allergic cross-reactivity can occur in a patient reacting to similar allergens from different origins, justifying the research in both systems as in Europe a greater number of people suffers from apple fruit allergy, but little evidence exists about pollen. Apple fruit allergies are due to four different classes of allergens (Mal d 1, 2, 3, 4), whose allergenicity is related both to genotype and tissue specificity; therefore I have investigated their presence also in pollen at different time of germination to clarify the apple pollen allergenic potential. I have observed that the same four classes of allergens found in fruit are expressed at different levels also in pollen, and their presence might support that the apple pollen can be considered allergenic as the fruit, deducing that apple allergy could also be indirectly caused by sensitization to pollen. Climate changes resulting from increases in temperature and air pollution influence pollen allergenicity, responsible for the dramatic raise in respiratory allergies (hay fever, bronchial asthma, conjunctivitis). Although the link between climate change and pollen allergenicity is proven, the underlying mechanism is little understood. Transglutaminases (TGases), a class of enzymes able to post-translationally modify proteins, are activated under stress and involved in some inflammatory responses, enhancing the activity of pro-inflammatory phospholipase A2, suggesting a role in allergies. Recently, a calcium-dependent TGase activity has been identified in the pollen cell wall, raising the possibility that pollen TGase may have a role in the modification of pollen allergens reported above, thus stabilizing them against proteases. This enzyme can be involved also in the transamidation of proteins present in the human mucosa interacting with surface pollen or, finally, the enzyme itself can represent an allergen, as suggested by studies on celiac desease. I have hypothesized that this pollen enzyme can be affected by climate changes and be involved in exhacerbating allergy response. The data presented in this thesis represent a scientific basis for future development of studies devoted to verify the hypothesis set out here. First, I have demonstrated the presence of an extracellular TGase on the surface of the grain observed either at the apical or the proximal parts of the pollen-tube by laser confocal microscopy (Iorio et al., 2008), that plays an essential role in apple pollen-tube growth, as suggested by the arrest of tube elongation by TGase inhibitors, such as EGTA or R281. Its involvement in pollen tube growth is mainly confirmed by the data of activity and gene expression, because TGase showed a peak between 15 min and 30 min of germination, when this process is well established, and an optimal pH around 6.5, which is close to that recorded for the germination medium. Moreover, data show that pollen TGase can be a glycoprotein as the glycosylation profile is linked both with the activation of the enzyme and with its localization at the pollen cell wall during germination, because from the data presented seems that the active form of TGase involved in pollen tube growth and pollen-stylar interaction is more exposed and more weakly bound to the cell wall. Interestingly, TGase interacts with fibronectin (FN), a putative SAMs or psECM component, inducing possibly intracellular signal transduction during the interaction between pollen-stylar occuring in the germination process, since a protein immunorecognised by anti-FN antibody is also present in pollen, in particular at the level of pollen grain cell wall in a punctuate pattern, but also along the shank of the pollen tube wall, in a similar pattern that recalls the signal obtained with the antibody anti TGase. FN represents a good substrate for the enzyme activity, better than DMC usually used as standard substrate for animal TGase. Thus, this pollen enzyme, necessary for its germination, is exposed on the pollen surface and consequently can easily interact with mucosal proteins, as it has been found germinated pollen in studies conducted on human mucus (Forlani, personal communication). I have obtained data that TGase activity increases in a very remarkable way when pollen is exposed to stressful conditions, such as climate changes and environmental pollution. I have used two different species of pollen, an aero allergenic (hazelnut, Corylus avellana) pollen, whose allergenicity is well documented, and an enthomophylus (apple, Malus domestica) pollen, which is not yet well characterized, to compare data on their mechanism of action in response to stressors. The two pollens have been exposed to climate changes (different temperatures, relative humidity (rH), acid rain at pH 5.6 and copper pollution (3.10 µg/l)) and showed an increase in pollen surface TGase activity that is not accompanied to an induced expression of TGase immunoreactive protein with AtPNG1p. Probably, climate change induce an alteration or damage to pollen cell wall that carries the pollen grains to release their content in the medium including TGase enzyme, that can be free to carry out its function as confirmed by the immunolocalisation and by the in situ TGase activity assay data; morphological examination indicated pollen damage, viability significantly reduced and in acid rain conditions an early germination of apple pollen, thus possibly enhancing the TGase exposure on pollen surface. Several pollen proteins were post-translationally modified, as well as mammalian sPLA2 especially with Corylus pollen, which results in its activation, potentially altering pollen allergenicity and inflammation. Pollen TGase activity mimicked the behaviour of gpl TGase and AtPNG1p in the stimulation of sPLA2, even if the regulatory mechanism seems different to gpl TGase, because pollen TGase favours an intermolecular cross-linking between various molecules of sPLA2, giving rise to high-molecular protein networks normally more stable. In general, pollens exhibited a significant endogenous phospholipase activity and it has been observed differences according to the allergenic (Corylus) or not-well characterized allergenic (Malus) attitude of the pollen. However, even if with a different intensity level in activation, pollen enzyme share the ability to activate the sPLA2, thus suggesting an important regulatory role for the activation of a key enzyme of the inflammatory response, among which my interest was addressed to pollen allergy. In conclusion, from all the data presented, mainly presence of allergens, presence of an extracellular TGase, increasing in its activity following exposure to environmental pollution and PLA2 activation, I can conclude that also Malus pollen can behave as potentially allergenic. The mechanisms described here that could affect the allergenicity of pollen, maybe could be the same occurring in fruit, paving the way for future studies in the identification of hyper- and hypo- allergenic cultivars, in preventing environmental stressor effects and, possibly, in the production of transgenic plants.
Resumo:
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
Resumo:
This thesis will focus on the residual function and visual and attentional deficits in human patients, which accompany damage to the visual cortex or its thalamic afferents, and plastic changes, which follow it. In particular, I will focus on homonymous visual field defects, which comprise a broad set of central disorders of vision. I will present experimental evidence that when the primary visual pathway is completely damaged, the only signal that can be implicitly processed via subcortical visual networks is fear. I will also present data showing that in a patient with relative deafferentation of visual cortex, changes in the spatial tuning and response gain of the contralesional and ipsilesional cortex are observed, which are accompanied by changes in functional connectivity with regions belonging to the dorsal attentional network and the default mode network. I will also discuss how cortical plasticity might be harnessed to improve recovery through novel treatments. Moreover, I will show how treatment interventions aimed at recruiting spared subcortical pathway supporting multisensory orienting can drive network level change.