5 resultados para pseudo-random number generator

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plasma Focus is a device designed to generate a plasma sheet between two coaxial electrodes by means of a high voltage difference. The plasma is then driven to collapse into a “pinch”, where thermonuclear conditions prevail. During the “pinch phase” charged particles are emitted, with two main components: an ion beam peaked forward and an electron beam directed backward. The electron beam emitted backward by Plasma Focus devices is being investigated as a radiation source for medical applications, using it to produce x-rays by interaction with appropriate targets (through bremsstrahlung and characteristic emission). A dedicated Plasma Focus device, named PFMA-3 (Plasma Focus for Medical Applications number 3), has been designed, put in operation and tested by the research groups of the Universities of Bologna and Ferrara. The very high dose rate (several gray per discharge, in less than 1 µs) is a peculiarity of this device that has to be investigated, as it might modify the relative biological effectiveness (RBE). Aim of this Ph.D. project was to investigate the main physical properties of the low-energy x-ray beams produced by a Plasma Focus device and their potential medical applications to IORT treatments. It was necessary to develop the optimal geometrical configuration; to evaluate the x-rays produced and their dose deposited; to estimate the energy electron spectrum produced in the “pinch phase”; to study an optimal target for the conversion of the x-rays; to conduct simulations to study the physics involved; and in order to evaluate the radio-biological features of the beam, cell holders had to be developed for both irradiations and cell growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.