16 resultados para proximity query, collision test, distance test, data compression, triangle test
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.
Resumo:
In these last years a great effort has been put in the development of new techniques for automatic object classification, also due to the consequences in many applications such as medical imaging or driverless cars. To this end, several mathematical models have been developed from logistic regression to neural networks. A crucial aspect of these so called classification algorithms is the use of algebraic tools to represent and approximate the input data. In this thesis, we examine two different models for image classification based on a particular tensor decomposition named Tensor-Train (TT) decomposition. The use of tensor approaches preserves the multidimensional structure of the data and the neighboring relations among pixels. Furthermore the Tensor-Train, differently from other tensor decompositions, does not suffer from the curse of dimensionality making it an extremely powerful strategy when dealing with high-dimensional data. It also allows data compression when combined with truncation strategies that reduce memory requirements without spoiling classification performance. The first model we propose is based on a direct decomposition of the database by means of the TT decomposition to find basis vectors used to classify a new object. The second model is a tensor dictionary learning model, based on the TT decomposition where the terms of the decomposition are estimated using a proximal alternating linearized minimization algorithm with a spectral stepsize.
Resumo:
Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.
Resumo:
Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.
Resumo:
The Time-Of-Flight (TOF) detector of ALICE is designed to identify charged particles produced in Pb--Pb collisions at the LHC to address the physics of strongly-interacting matter and the Quark-Gluon Plasma (QGP). The detector is based on the Multigap Resistive Plate Chamber (MRPC) technology which guarantees the excellent performance required for a large time-of-flight array. The construction and installation of the apparatus in the experimental site have been completed and the detector is presently fully operative. All the steps which led to the construction of the TOF detector were strictly followed by a set of quality assurance procedures to enable high and uniform performance and eventually the detector has been commissioned with cosmic rays. This work aims at giving a detailed overview of the ALICE TOF detector, also focusing on the tests performed during the construction phase. The first data-taking experience and the first results obtained with cosmic rays during the commissioning phase are presented as well and allow to confirm the readiness state of the TOF detector for LHC collisions.
Resumo:
Aim of the research: to develop a prototype of homogeneous high-throughput screening (HTS) for identification of novel integrin antagonists for the treatment of ocular allergy and to better understand the mechanisms of action of integrin-mediated levocabastine antiallergic action. Results: This thesis provides evidence that adopting scintillation proximity assay (SPA) levocabastine (IC50=406 mM), but not the first-generation antihistamine chlorpheniramine, displaces [125I]fibronectin (FN) binding to human a4b1 integrin. This result is supported by flow cytometry analysis, where levocabastine antagonizes the binding of a primary antibody to integrin a4 expressed in Jurkat E6.1 cells. Levocabastine, but not chlorpheniramine, binds to a4b1 integrin and prevents eosinophil adhesion to VCAM-1, FN or human umbilical vein endothelial cells (HUVEC) cultured in vitro. Similarly, levocabastine affects aLb2/ICAM-1-mediated adhesion of Jurkat E6.1 cells. Analyzing the supernatant of TNF-a-treated (24h) eosinophilic cells (EoL-1), we report that levocabastine reduces the TNF-a-induced release of the cytokines IL-12p40, IL-8 and VEGF. Finally, in a model of allergic conjunctivitis, levocastine eye drops (0.05%) reduced the clinical aspects of the early and late phase reactions and the conjunctival expression of a4b1 integrin by reducing infiltrated eosinophils. Conclusions: SPA is a highly efficient, amenable to automation and robust binding assay to screen novel integrin antagonists in a HTS setting. We propose that blockade of integrinmediated cell adhesion might be a target of the anti-allergic action of levocabastine and may play a role in preventing eosinophil adhesion and infiltration in allergic conjunctivitis.
Resumo:
The evaluation of structural performance of existing concrete buildings, built according to standards and materials quite different to those available today, requires procedures and methods able to cover lack of data about mechanical material properties and reinforcement detailing. To this end detailed inspections and test on materials are required. As a consequence tests on drilled cores are required; on the other end, it is stated that non-destructive testing (NDT) cannot be used as the only mean to get structural information, but can be used in conjunction with destructive testing (DT) by a representative correlation between DT and NDT. The aim of this study is to verify the accuracy of some formulas of correlation available in literature between measured parameters, i.e. rebound index, ultrasonic pulse velocity and compressive strength (SonReb Method). To this end a relevant number of DT and NDT tests has been performed on many school buildings located in Cesena (Italy). The above relationships have been assessed on site correlating NDT results to strength of core drilled in adjacent locations. Nevertheless, concrete compressive strength assessed by means of NDT methods and evaluated with correlation formulas has the advantage of being able to be implemented and used for future applications in a much more simple way than other methods, even if its accuracy is strictly limited to the analysis of concretes having the same characteristics as those used for their calibration. This limitation warranted a search for a different evaluation method for the non-destructive parameters obtained on site. To this aim, the methodology of neural identification of compressive strength is presented. Artificial Neural Network (ANN) suitable for the specific analysis were chosen taking into account the development presented in the literature in this field. The networks were trained and tested in order to detect a more reliable strength identification methodology.
Resumo:
Background Decreased exercise capacity, and reduction in peak oxygen uptake are present in most patients affected by hypertrophic cardiomyopathy (HCM) . In addition an abnormal blood pressure response during a maximal exercise test was seen to be associated with high risk for sudden cardiac death in adult patients affected by HCM. Therefore exercise test (CPET) has become an important part of the evaluation of the HCM patients, but data on its role in patients with HCM in the pediatric age are quite limited. Methods and results Between 2004 and 2010, using CPET and echocardiography, we studied 68 children (mean age 13.9 ± 2 years) with HCM. The exercise test was completed by all the patients without adverse complications. The mean value of achieved VO2 max was 31.4 ± 8.3 mL/Kg/min which corresponded to 77.5 ± 16.9 % of predicted range. 51 patients (75%) reached a subnormal value of VO2max. On univariate analysis the achieved VO2 as percentage of predicted and the peak exercise systolic blood pressure (BP) Z score were inversely associated with max left ventricle (LV) wall thickness, with E/Ea ratio, and directly related with Ea and Sa wave velocities No association was found with the LV outflow tract gradient. During a mean follow up of 2.16 ± 1.7 years 9 patients reached the defined clinical end point of death, transplantation, implanted cardioverter defibrillator (ICD) shock, ICD implantation for secondary prevention or myectomy. Patients with peak VO2 < 52% or with peak systolic BP Z score < -5.8 had lower event free survival at follow up. Conclusions Exercise capacity is decreased in patients with HCM in pediatric age and global ventricular function seems being the most important determinant of exercise capacity in these patients. CPET seems to play an important role in prognostic stratification of children affected by HCM.
Resumo:
I test di qualifica a vibrazioni vengono usati in fase di progettazione di un componente per verificarne la resistenza meccanica alle sollecitazioni dinamiche (di natura vibratoria) applicate durante la sua vita utile. La durata delle vibrazioni applicate al componente durante la sua vita utile (migliaia di ore) deve essere ridotta al fine di realizzare test fattibili in laboratorio, condotti in genere utilizzando uno shaker elettrodinamico. L’idea è quella di aumentare l’intensità delle vibrazioni riducendone la durata. Esistono diverse procedure di Test Tailoring che tramite un metodo di sintesi definiscono un profilo vibratorio da applicare in laboratorio a partire dalle reali vibrazioni applicate al componente: una delle metodologie più comuni si basa sull’equivalenza del danno a fatica prodotto dalle reali vibrazioni e dalle vibrazioni sintetizzate. Questo approccio è piuttosto diffuso tuttavia all’autore non risulta presente nessun riferimento in letteratura che ne certifichi la validità tramite evidenza sperimentalmente. L’obiettivo dell’attività di ricerca è stato di verificare la validità del metodo tramite una campagna sperimentale condotta su opportuni provini. Il metodo viene inizialmente usato per sintetizzare un profilo vibratorio (random stazionario) avente la stessa durata di un profilo vibratorio non stazionario acquisito in condizioni reali. Il danno a fatica prodotto dalla vibrazione sintetizzata è stato confrontato con quello della vibrazione reale in termini di tempo di rottura dei provini. I risultati mostrano che il danno prodotto dalla vibrazione sintetizzata è sovrastimato, quindi l’equivalenza non è rispettata. Sono stati individuati alcuni punti critici e sono state proposte alcune modifiche al metodo per rendere la teoria più robusta. Il metodo è stato verificato con altri test e i risultati confermano la validità del metodo a condizione che i punti critici individuati siano correttamente analizzati.
Resumo:
Obiettivi: Valutare la prevalenza dei diversi genotipi di HPV in pazienti con diagnosi di CIN2/3 nella Regione Emilia-Romagna, la persistenza genotipo-specifica di HPV e l’espressione degli oncogeni virali E6/E7 nel follow-up post-trattamento come fattori di rischio di recidiva/persistenza o progressione di malattia; verificare l’applicabilità di nuovi test diagnostici biomolecolari nello screening del cervicocarcinoma. Metodi: Sono state incluse pazienti con citologia di screening anormale, sottoposte a trattamento escissionale (T0) per diagnosi di CIN2/3 su biopsia mirata. Al T0 e durante il follow-up a 6, 12, 18 e 24 mesi, oltre al Pap test e alla colposcopia, sono state effettuate la ricerca e la genotipizzazione dell'HPV DNA di 28 genotipi. In caso di positività al DNA dei 5 genotipi 16, 18, 31, 33 e/o 45, si è proceduto alla ricerca dell'HPV mRNA di E6/E7. Risultati preliminari: Il 95.8% delle 168 pazienti selezionate è risultato HPV DNA positivo al T0. Nel 60.9% dei casi le infezioni erano singole (prevalentemente da HPV 16 e 31), nel 39.1% erano multiple. L'HPV 16 è stato il genotipo maggiormente rilevato (57%). Il 94.3% (117/124) delle pazienti positive per i 5 genotipi di HPV DNA sono risultate mRNA positive. Abbiamo avuto un drop-out di 38/168 pazienti. A 18 mesi (95% delle pazienti) la persistenza dell'HPV DNA di qualsiasi genotipo era del 46%, quella dell'HPV DNA dei 5 genotipi era del 39%, con espressione di mRNA nel 21%. Abbiamo avuto recidiva di malattia (CIN2+) nel 10.8% (14/130) a 18 mesi. Il pap test era negativo in 4/14 casi, l'HPV DNA test era positivo in tutti i casi, l'mRNA test in 11/12 casi. Conclusioni: L'HR-HPV DNA test è più sensibile della citologia, l'mRNA test è più specifico nell'individuare una recidiva. I dati definitivi saranno disponibili al termine del follow-up programmato.
Resumo:
The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.
Resumo:
Il primo studio ha verificato l'affidabilità del software Polimedicus e gli effetti indotti d'allenamento arobico all’intensità del FatMax. 16 soggetti sovrappeso, di circa 40-55anni, sono stati arruolati e sottoposti a un test incrementale fino a raggiungere un RER di 0,95, e da quel momento il carico è stato aumentato di 1 km/ h ogni minuto fino a esaurimento. Successivamente, è stato verificato se i valori estrapolati dal programma erano quelli che si possono verificare durante a un test a carico costante di 1ora. I soggetti dopo 8 settimane di allenamento hanno fatto un altro test incrementale. Il dati hanno mostrato che Polimedicus non è molto affidabile, soprattutto l'HR. Nel secondo studio è stato sviluppato un nuovo programma, Inca, ed i risultati sono stati confrontati con i dati ottenuti dal primo studio con Polimedicus. I risultati finali hanno mostrato che Inca è più affidabile. Nel terzo studio, abbiamo voluto verificare l'esattezza del calcolo del FatMax con Inca e il test FATmaxwork. 25 soggetti in sovrappeso, tra 40-55 anni, sono stati arruolati e sottoposti al FATmaxwork test. Successivamente, è stato verificato se i valori estrapolati da INCA erano quelli che possono verificarsi durante un carico di prova costante di un'ora. L'analisi ha mostrato una precisione del calcolo della FatMax durante il carico di lavoro. Conclusione: E’ emersa una certa difficoltà nel determinare questo parametro, sia per la variabilità inter-individuale che intra-individuale. In futuro bisognerà migliorare INCA per ottenere protocolli di allenamento ancora più validi.
Resumo:
Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.
Resumo:
Negli ultimi anni, i limiti sempre più stringenti sulle emissioni inquinanti dei gas di scarico, hanno portato ad un notevole aumento della complessità dei motori a combustione interna. Questa complicazione determina un aumento esponenziale del numero di test da effettuare nella sala prova. I metodi tipici di gestione dei test non possono più essere utilizzati, ma è essenziale creare un sistema che ottimizzi le prove. Per ridurre drasticamente il tempo di esecuzione, è necessario implementare un'architettura in grado di facilitare lo scambio di dati tra i sistemi presenti nella sala prova, e, in aggiunta, definire le strategie di automazione dei test. L'approccio a taluni metodi si presenta ancora complicato in molti gruppi di sviluppo di strategie di controllo motore, anche se, una volta sviluppati, portano e a grandi benefici durante la fase di test. Il lavoro illustra i metodi implementati per la gestione di queste strategie. Prima si descrive l'approccio utilizzato nella calibrazione di anticipo di accensione per mantenere livelli accettabili di detonazione durante il processo di calibrazione. Successivamente è mostrato il sistema di automazione dei test che consente il pieno controllo del punto di funzionamento del motore, la gestione dell'acquisizione e la verifica della stabilità delle condizioni ottenute. L'ultima parte mostra sistemi di prototipazione rapida per la gestione di componenti innovatici del motore.
Resumo:
Nowadays the production of increasingly complex and electrified vehicles requires the implementation of new control and monitoring systems. This reason, together with the tendency of moving rapidly from the test bench to the vehicle, leads to a landscape that requires the development of embedded hardware and software to face the application effectively and efficiently. The development of application-based software on real-time/FPGA hardware could be a good answer for these challenges: FPGA grants parallel low-level and high-speed calculation/timing, while the Real-Time processor can handle high-level calculation layers, logging and communication functions with determinism. Thanks to the software flexibility and small dimensions, these architectures can find a perfect collocation as engine RCP (Rapid Control Prototyping) units and as smart data logger/analyser, both for test bench and on vehicle application. Efforts have been done for building a base architecture with common functionalities capable of easily hosting application-specific control code. Several case studies originating in this scenario will be shown; dedicated solutions for protype applications have been developed exploiting a real-time/FPGA architecture as ECU (Engine Control Unit) and custom RCP functionalities, such as water injection and testing hydraulic brake control.