4 resultados para protection mechanisms
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Big data and AI are paving the way to promising scenarios in clinical practice and research. However, the use of such technologies might clash with GDPR requirements. Today, two forces are driving the EU policies in this domain. The first is the necessity to protect individuals’ safety and fundamental rights. The second is to incentivize the deployment of innovative technologies. The first objective is pursued by legislative acts such as the GDPR or the AIA, the second is supported by the new data strategy recently launched by the European Commission. Against this background, the thesis analyses the issue of GDPR compliance when big data and AI systems are implemented in the health domain. The thesis focuses on the use of co-regulatory tools for compliance with the GDPR. This work argues that there are two level of co-regulation in the EU legal system. The first, more general, is the approach pursued by the EU legislator when shaping legislative measures that deal with fast-evolving technologies. The GDPR can be deemed a co-regulatory solution since it mainly introduces general requirements, which implementation shall then be interpretated by the addressee of the law following a risk-based approach. This approach, although useful is costly and sometimes burdensome for organisations. The second co-regulatory level is represented by specific co-regulatory tools, such as code of conduct and certification mechanisms. These tools are meant to guide and support the interpretation effort of the addressee of the law. The thesis argues that the lack of co-regulatory tools which are supposed to implement data protection law in specific situations could be an obstacle to the deployment of innovative solutions in complex scenario such as the health ecosystem. The thesis advances hypothesis on theoretical level about the reasons of such a lack of co-regulatory solutions.
Resumo:
Photosynthetic organisms have sought out the delicate balance between efficient light harvesting under limited irradiance and regulated energy dissipation under excess irradiance. One of the protective mechanisms is the thermal energy dissipation through the xanthophyll cycle that may transform harmlessly the excitation energy into heat and thereby prevent the formation of damaging active oxygen species (AOS). Violaxanthin deepoxidase (VDE) converts violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) defending the photosynthetic apparatus from excess of light. Another important biological pathway is the chloroplast water-water cycle, which is referred to the electrons from water generated in PSII reducing atmospheric O2 to water in PSI. This mechanism is active in the scavenging of AOS, when electron transport is slowed down by the over-reduction of NADPH pool. The control of the VDE gene and the variations of a set of physiological parameters, such as chlorophyll florescence and AOS content, have been investigated in response to excess of light and drought condition using Arabidopsis thaliana and Arbutus unedo.. Pigment analysis showed an unambiguous relationship between xanthophyll de-epoxidation state ((A+Z)/(V+A+Z)) and VDE mRNA amount in not-irrigated plants. Unexpectedly, gene expression is higher during the night when xanthophylls are mostly epoxidated and VDE activity is supposed to be very low than during the day. The importance of the water-water cycle in protecting the chloroplasts from light stress has been examined through Arabidopsis plant with a suppressed expression of the key enzyme of the cycle: the thylakoid-attached copper/zinc superoxide dismutase. The analysis revealed changes in transcript expression during leaf development consistent with a signalling role of AOS in plant defence responses but no difference was found any in photosynthesis efficiency or in AOS concentration after short-term exposure to excess of light. Environmental stresses such as drought may render previously optimal light levels excessive. In these circumstances the intrinsic regulations of photosynthetic electron transport like xanthophyll and water-water cycles might modify metabolism and gene expression in order to deal with increasing AOS.
Resumo:
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules. This adaptation occurs in a biphasic pattern: an early phase which develops after 1-2 h, and a late phase that develops after 12-24 h. While it is widely accepted that reactive oxygen species (ROS) are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. Methylglyoxal, a metabolic compound formed mainly from the glycolytic intermediate glyceraldehyde-3-phosphate., is a precursor of advanced glycation end product (AGEs) .It is more reactive than glucose and shows a stronger ability to cross-link with protein amino groups to form AGEs. Methylglyoxal induced cytotoxicity may be at least partially responsible for cardiovascular and Alzheimer diseases. Methylglyoxal omeostasis is controlled by the glyoxalase system that consists of two enzyme, glyoxalase 1 (GLO1) and glyoxalase 2. In a recent study it was demonstrated that the transcriptional levels of GLO1 are controlled by NF-E2-related factor 2 (Nrf2). The isothiocyanate sulforaphane, derived from the hydrolysis of glucoraphanin abundantly present in broccoli, represents one of the most potent inducers of phase II enzymes through the Keap1–Nrf2 pathway. The aim of this thesis was evaluated molecular mechanisms in cardio- and neuroprotection and the possibility of modulation by nutraceutical phytocomponents This thesis show to one side that the protection induced by H2O2 is mediated by detoxifying and antioxidant phase II enzymes induction, regulated, not only by transcriptional factor Nrf2, but also by Nrf1; on the other side our data represent an innovative result because for the first time it was demonstrated the possibility of inducing GLO1 by SF supplementation.