5 resultados para proliferative lesions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The main work involved the PMWS (Post-weaning multisystemic Wasting Syndrome), caused by PCV-2 (Porcine Circovirus type 2) that involved post-weaned pigs. Merial Italy has funded a study activity in which groups of 3-5 animals were sampled for lungs, tracheo-bronchial and superficial inguinal lymph nodes, ileum and tonsils. The protocol applied can be identified as a more diagnostic potential on the individual than on the group. PNP. Another investigation has been conducted to study proliferative and necrotizing pneumonia (PNP), a form of interstitial pneumonia in weaning and post-weaning pigs characterized by hypertrophy and hyperplasia of type II pneumocytes, coagulative necrosis and granular debris within alveolar spaces. Many studies suggest porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as the main causes of the disease, but Aujeszky disease virus (ADV) and swine influenza virus (SIV) are also considered. An immunohistochemical study was carried out to evaluate the role of these viruses in PNP lesions in Italy. PNP results primarily associated with PRRSV, even if co-infection is characterized by more severe histological features. Reproductive pathology. A major risk factor for PCV2 infection is a viraemic episode taking place in pregnant sows with low antibody titer which is transmitted by specific PCV2 products of conception. PCV2 can infect the fetus even by vehicles through infected semen or ova, or as a result of infection of the genital tract. An investigation was carried out to identify the presence and localization of PCV2 in the genital tracts of sows experimentally infected with PCV2 and in their fetuses. The results obtained suggest that: conventional sows can be infected by intrauterine exposition; low antibody titres increase the probability of infection; PCV2 infection close to insemination time reduces the pregnancy rate; placental lesions may represent an additional cause of fetal suffering.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
The clonal distribution of BRAFV600E in papillary thyroid carcinoma (PTC) has been recently debated. No information is currently available about precursor lesions of PTCs. My first aim was to establish whether the BRAFV600E mutation occurs as a subclonal event in PTCs. My second aim was to screen BRAF mutations in histologically benign tissue of cases with BRAFV600E or BRAFwt PTCs in order to identify putative precursor lesions of PTCs. Highly sensitive semi-quantitative methods were used: Allele Specific LNA quantitative PCR (ASLNAqPCR) and 454 Next-Generation Sequencing (NGS). For the first aim 155 consecutive formalin-fixed and paraffin-embedded (FFPE) specimens of PTCs were analyzed. The percentage of mutated cells obtained was normalized to the estimated number of neoplastic cells. Three groups of tumors were identified: a first had a percentage of BRAF mutated neoplastic cells > 80%; a second group showed a number of BRAF mutated neoplastic cells < 30%; a third group had a distribution of BRAFV600E between 30-80%. The large presence of BRAFV600E mutated neoplastic cell sub-populations suggests that BRAFV600E may be acquired early during tumorigenesis: therefore, BRAFV600E can be heterogeneously distributed in PTC. For the second aim, two groups were studied: one consisted of 20 cases with BRAFV600E mutated PTC, the other of 9 BRAFwt PTCs. Seventy-five and 23 histologically benign FFPE thyroid specimens were analyzed from the BRAFV600E mutated and BRAFwt PTC groups, respectively. The screening of BRAF mutations identified BRAFV600E in “atypical” cell foci from both groups of patients. “Unusual” BRAF substitutions were observed in histologically benign thyroid associated with BRAFV600E PTCs. These mutations were very uncommon in the group with BRAFwt PTCs and in BRAFV600E PTCs. Therefore, lesions carrying BRAF mutations may represent “abortive” attempts at cancer development: only BRAFV600E boosts neoplastic transformation to PTC. BRAFV600E mutated “atypical foci” may represent precursor lesions of BRAFV600E mutated PTCs.