2 resultados para programming models
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.
Resumo:
Recent research has shown that the performance of a single, arbitrarily efficient algorithm can be significantly outperformed by using a portfolio of —possibly on-average slower— algorithms. Within the Constraint Programming (CP) context, a portfolio solver can be seen as a particular constraint solver that exploits the synergy between the constituent solvers of its portfolio for predicting which is (or which are) the best solver(s) to run for solving a new, unseen instance. In this thesis we examine the benefits of portfolio solvers in CP. Despite portfolio approaches have been extensively studied for Boolean Satisfiability (SAT) problems, in the more general CP field these techniques have been only marginally studied and used. We conducted this work through the investigation, the analysis and the construction of several portfolio approaches for solving both satisfaction and optimization problems. We focused in particular on sequential approaches, i.e., single-threaded portfolio solvers always running on the same core. We started from a first empirical evaluation on portfolio approaches for solving Constraint Satisfaction Problems (CSPs), and then we improved on it by introducing new data, solvers, features, algorithms, and tools. Afterwards, we addressed the more general Constraint Optimization Problems (COPs) by implementing and testing a number of models for dealing with COP portfolio solvers. Finally, we have come full circle by developing sunny-cp: a sequential CP portfolio solver that turned out to be competitive also in the MiniZinc Challenge, the reference competition for CP solvers.