9 resultados para production rate

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production rate of $b$ and $\bar{b}$ hadrons in $pp$ collisions are not expected to be strictly identical, due to imbalance between quarks and anti-quarks in the initial state. This phenomenon can be naively related to the fact that the $\bar{b}$ quark produced in the hard scattering might combine with a $u$ or $d$ valence quark from the colliding protons, whereas the same cannot happen for a $b$ quark. This thesis presents the analysis performed to determine the production asymmetries of $B^0$ and $B^0_s$. The analysis relies on data samples collected by the LHCb detector at the Large Hadron Collider (LHC) during the 2011 and 2012 data takings at two different values of the centre of mass energy $\sqrt{s}=7$ TeV and at $\sqrt{s}=8$ TeV, corresponding respectively to an integrated luminosity of 1 fb$^{-1}$ and of 2 fb$^{-1}$. The production asymmetry is one of the key ingredients to perform measurements of $CP$ violation in b-hadron decays at the LHC, since $CP$ asymmetries must be disentangled from other sources. The measurements of the production asymmetries are performed in bins of $p_\mathrm{T}$ and $\eta$ of the $B$-meson. The values of the production asymmetries, integrated in the ranges $4 < p_\mathrm{T} < 30$ GeV/c and $2.5<\eta<4.5$, are determined to be: \begin{equation} A_\mathrm{P}(\B^0)= (-1.00\pm0.48\pm0.29)\%,\nonumber \end{equation} \begin{equation} A_\mathrm{P}(\B^0_s)= (\phantom{-}1.09\pm2.61\pm0.61)\%,\nonumber \end{equation} where the first uncertainty is statistical and the second is systematic. The measurement of $A_\mathrm{P}(B^0)$ is performed using the full statistics collected by LHCb so far, corresponding to an integrated luminosity of 3 fb$^{-1}$, while the measurement of $A_\mathrm{P}(B^0_s)$ is realized with the first 1 fb$^{-1}$, leaving room for improvement. No clear evidence of dependences on the values of $p_\mathrm{T}$ and $\eta$ is observed. The results presented in this thesis are the most precise measurements available up to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of carbonate reservoir is oil-wet, which is an unfavorable condition for oil production. Generally, the total oil recovery after both primary and secondary recovery in an oil-wet reservoir is low. The amount of producible oil by enhanced oil recovery techniques is still large. Alkali substances are proven to be able to reverse rock wettability from oil-wet to water-wet, which is a favorable condition for oil production. However, the wettability reversal mechanism would require a noneconomical aging period to reach the maximum reversal condition. An intermittent flow with the optimum pausing period is then combined with alkali flooding (combination technique) to increase the wettability reversal mechanism and as a consequence, oil recovery is improved. The aims of this study are to evaluate the efficiency of the combination technique and to study the parameters that affect this method. In order to implement alkali flooding, reservoir rock and fluid properties were gathered, e.g. interfacial tension of fluids, rock wettability, etc. The flooding efficiency curves are obtained from core flooding and used as a major criterion for evaluation the performance of technique. The combination technique improves oil recovery when the alkali concentration is lower than 1% wt. (where the wettability reversal mechanism is dominant). The soap plug (that appears when high alkali concentration is used) is absent in this combination as seen from no drop of production rate. Moreover, the use of low alkali concentration limits alkali loss. This combination probably improves oil recovery also in the fractured carbonate reservoirs in which oil is uneconomically produced. The results from the current study indicate that the combination technique is an option that can improve the production of carbonate reservoirs. And a less quantity of alkali is consumed in the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In two Italian sites, multiaxis trees slightly reduced primary axis length and secondary axis length of newly grafted trees, and increased the number of secondary shoots. The total length, node production, and total dry matter gain were proportional to the number of axis. Growth of both primary and secondary shoots, and dry matter accumulation, have been found to be also well related to rootstock vigour. A great variability in axillary shoot production was recorded among different environments. Grafted trees had higher primary growth, secondary axis growth, and dry matter gain than chip budded trees. Stem water potential measured in the second year after grafting was not affected by rootstocks or number of leaders. Measurements performed in New Zealand (Hawke’s Bay) during the second year after grafting revealed that both final length and growth rate of primary and secondary axis were related to the rootstock rather than to the training system. Dwarfing rootstocks reduced the number of long vegetative shoots and increased the proportion of less vigorous shoots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes hydrogen production by anaerobic digestion of glucose, molasses and milk whey by 4 thermophilic Thermotoga strains. In the attached-cell tests, the biofilm support characterized by the highest specific surface resulted in the best H2 rate. All the Thermotoga strains examined (T. neapolitana, T. maritima, T. naphtophila, T. petrophila) could produce H2 from glucose, molasses and milk whey, both in suspended- and attached-cell tests. With all the three substrates, the best performances were obtained with T. neapolitana. Some tests were conducted out to select the optimal carrier for the attached-cell conditions. 4 types of carrier were tested: 3 sintered glass carriers and a ceramic one; the chosen carrier was Biomax.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precision Agriculture (PA) and the more specific branch of Precision Horticulture are two very promising sectors. They focus on the use of technologies in agriculture to optimize the use of inputs, so to reach a better efficiency, and minimize waste of resources. This important objective motivated many researchers and companies to search new technology solutions. Sometimes the effort proved to be a good seed, but sometimes an unfeasible idea. So that PA, from its birth more or less 25 years ago, is still a “new” management, interesting for the future, but an actual low adoption rate is still reported by experts and researchers. This work aims to give a contribution in finding the causes of this low adoption rate and proposing a methodological solution to this problem. The first step was to examine prior research about Precision Agriculture adoption, by ex ante and ex post approach. It was supposed as important to find connections between these two phases of a purchase experience. In fact, the ex ante studies dealt with potential consumer’s perceptions before a usage experience occurred, therefore before purchasing a technology, while the ex post studies described the drivers which made a farmer become an end-user of PA technology. Then, an example of consumer research is presented. This was an ex ante research focused on pre-prototype technology for fruit production. This kind of research could give precious information about consumer acceptance before reaching an advanced development phase of the technology, and so to have the possibility to change something with the least financial impact. The final step was to develop the pre-prototype technology that was the subject of the consumer acceptance research and test its technical characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis aims to expose the advances achieved in the practices of captive breeding of the European eel (Anguilla anguilla). Aspects investigated concern both approaches livestock (breeding selection, response to hormonal stimulation, reproductive performance, incubation of eggs) and physiological aspects (endocrine plasma profiles of players), as well as engineering aspects. Studies conducted on various populations of wild eel have shown that the main determining factor in the selection of wild females destined to captive breeding must be the Silver Index which may determine the stage of pubertal development. The hormonal induction protocol adopted, with increasing doses of carp pituitary extract, it has proven useful to ovarian development, with a synchronization effect that is positively reflected on egg production. The studies on the effects of photoperiod show how the condition of total darkness can positively influence practices of reproductions in captivity. The effects of photoperiod were also investigated at the physiological level, observing the plasma levels of steroids ( E2, T) and thyroid hormones (T3 and T4) and the expression in the liver of vitellogenin (vtg1 and vtg2) and estradiol membrane receptor (ESR1). From the comparison between spontaneous deposition and insemination techniques through the stripping is inferred as the first ports to a better qualitative and quantitative yield in the production of eggs capable of being fertilized, also the presence of a percentage of oocytes completely transparent can be used to obtain eggs at a good rate of fertility. Finally, the design and implementation of a system for recirculating aquaculture suited to meet the needs of species-specific eel showed how to improve the reproductive results, it would be preferable to adopt low-flow and low density incubation.