4 resultados para production engineering

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temporospatial controlled delivery of growth factors is crucial to trigger the desired healing mechanisms in target tissues. The uncontrolled release of growth factors has been demonstrated to cause severe side effects in its surrounding tissues. Thus, the first working hypothesis was to tune and optimize a newly developed multiscale delivery platform based on a nanostructured silicon particle core (pSi) and a poly (dl-lactide-co-glycolide) acid (PLGA) outer shell. In a murine subcutaneous model, the platform was demonstrated to be fully tunable for the temporal and spatial control release of the payload. Secondly, a multiscale approach was followed in a multicompartment collagen scaffold, to selectively integrate different sets of PLGA-pSi loaded with different reporter proteins. The spatial confinement of the microspheres allowed the release of the reporter proteins in each of the layers of the scaffold. Finally, the staged and zero-order release kinetics enabled the temporal biochemical patterning of the scaffold. The last step of this PhD project was to test if by fully embedding PLGA microspheres in a highly structured and fibrous collagen-based scaffold (camouflaging), it was possible to prevent their early detection and clearance by macrophages. It was further studied whether such a camouflaging strategy was efficient in reducing the production of key inflammatory molecules, while preserving the release kinetics of the payload of the PLGA microspheres. Results demonstrated that the camouflaging allowed for a 10-fold decrease in the number of PLGA microspheres internalized by macrophages, suggesting that the 3D scaffold operated by cloaking the PLGA microspheres. When the production of key inflammatory cytokines induced by the scaffold was assessed, macrophages' response to the PLGA microspheres-integrated scaffolds resulted in a response similar to that observed in the control (not functionalized scaffold) and the release kinetic of a reporter protein was preserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis aims to expose the advances achieved in the practices of captive breeding of the European eel (Anguilla anguilla). Aspects investigated concern both approaches livestock (breeding selection, response to hormonal stimulation, reproductive performance, incubation of eggs) and physiological aspects (endocrine plasma profiles of players), as well as engineering aspects. Studies conducted on various populations of wild eel have shown that the main determining factor in the selection of wild females destined to captive breeding must be the Silver Index which may determine the stage of pubertal development. The hormonal induction protocol adopted, with increasing doses of carp pituitary extract, it has proven useful to ovarian development, with a synchronization effect that is positively reflected on egg production. The studies on the effects of photoperiod show how the condition of total darkness can positively influence practices of reproductions in captivity. The effects of photoperiod were also investigated at the physiological level, observing the plasma levels of steroids ( E2, T) and thyroid hormones (T3 and T4) and the expression in the liver of vitellogenin (vtg1 and vtg2) and estradiol membrane receptor (ESR1). From the comparison between spontaneous deposition and insemination techniques through the stripping is inferred as the first ports to a better qualitative and quantitative yield in the production of eggs capable of being fertilized, also the presence of a percentage of oocytes completely transparent can be used to obtain eggs at a good rate of fertility. Finally, the design and implementation of a system for recirculating aquaculture suited to meet the needs of species-specific eel showed how to improve the reproductive results, it would be preferable to adopt low-flow and low density incubation.