7 resultados para probe hybridization

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity carried out during my PhD was principally addressed to the development of portable microfluidic analytical devices based on biospecific molecular recognition reactions and CL detection. In particular, the development of biosensors required the study of different materials and procedures for their construction, with particular attention to the development of suitable immobilization procedures, fluidic systems and the selection of the suitable detectors. Different methods were exploited, such as gene probe hybridization assay or immunoassay, based on different platform (functionalized glass slide or nitrocellulose membrane) trying to improve the simplicity of the assay procedure. Different CL detectors were also employed and compared with each other in the search for the best compromise between portability and sensitivity. The work was therefore aimed at miniaturization and simplification of analytical devices and the study involved all aspects of the system, from the analytical methodology to the type of detector, in order to combine high sensitivity with easiness-of-use and rapidity. The latest development involving the use of smartphone as chemiluminescent detector paves the way for a new generation of analytical devices in the clinical diagnostic field thanks to the ideal combination of sensibility a simplicity of the CL with the day-by-day increase in the performance of the new generation smartphone camera. Moreover, the connectivity and data processing offered by smartphones can be exploited to perform analysis directly at home with simple procedures. The system could eventually be used to monitor patient health and directly notify the physician of the analysis results allowing a decrease in costs and an increase in the healthcare availability and accessibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastroesophageal junction (GEJ) adenocarcinoma are uncommon before age of 40 years. While certain clinical, pathological and molecular features of GEJ adenocarcinoma in older patients have been extensively studied, these characteristics in the younger population remain to be determined. In the recent literature, a high sensitivity and specificity for the detection of dysplasia and esophageal adenocarcinoma was demonstrated by using multicolor fluorescence in situ hybridization (FISH) DNA probe set specific for the locus specific regions 9p21 (p16), 20q13.2 and Y chromosome. We evaluated 663 patients with GEJ adenocarcinoma and further divided them into 2 age-groups of or= 50 years, rispectively. FISH with selected DNA probe for Y chromosome, locus 9p21 (p16), and locus 20q13.2 was investigated with formalin fixed and parassin embedded tissue from surgical resections of 17 younger and 11 older patients. Signals were counted in > 100 cells with each given histopathological category. The chromosomal aberrations were then compared in the 2 age-groups with the focus on uninvolved squamous and columnar epithelium, intestinal metaplasia (Barrett's mucosa), glandular dysplasia, and adenocarcinoma. Comparisons were performed by the X2 test, Fisher's exact test, Student's t-test and Mann-Whitney U-test as appropriate. Survival was estimated by the Kaplan-Meier method with univariate analysis by the log-rank. Significance was taken at the 5% level. There was no difference in the surgical technique applied in both age groups and most patients underwent Ivor Lewis esophagectomy. Among clinical variables there was a higher incidence of smocking history in older patient group. We identified a progressive loss of Y chromosome from benign squamos epithelium to Barrett's mucosa and glandular dysplasia, and, ultimately, to a near complete loss in adenocarcinoma in both age groups. The young group revealed significantly more losses of 9p21 in both benign and neoplastic cells when compared to the older patients group. In addition, we demonstrated an increase in the percentage of cells showing gain of locus 20q13.2 with progression from benign epithelium through dysplasia to adenocarcinoma with almost the same trend in both the young and the older patients. When compared with the older age-group, younger patients with GEJ adenocarcinoma possess similar known demographics, environmental factors, clinical, and pathologic characteristics. The most commonly detected genetic aberrations of progressive Y chromosomal loss, 9p21 locus loss, and 20q13 gains were similar in the younger and older patients. However the rate of loss of 9p21 is significantly higher in young patients, in both the benign and the neoplastic cells. The loss of 9p21, and possibly, the subsequent inactivation of p16 gene may be one of the molecular mechanisms responsible for the accelerated neoplastic process in young patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis is focused on the open-ended coaxial-probe frequency-domain reflectometry technique for complex permittivity measurement at microwave frequencies of dispersive dielectric multilayer materials. An effective dielectric model is introduced and validated to extend the applicability of this technique to multilayer materials in on-line system context. In addition, the thesis presents: 1) a numerical study regarding the imperfectness of the contact at the probe-material interface, 2) a review of the available models and techniques, 3) a new classification of the extraction schemes with guidelines on how they can be used to improve the overall performance of the probe according to the problem requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, Organic Thin Film Transistors (OTFTs) have attracted lots of interest due to their low cost, large area and flexible properties which have brought them to be considered the building blocks of the future organic electronics. Experimentally, devices based on the same organic material deposited in different ways, i.e. by varying the deposition rate of the molecules, show different electrical performance. As predicted theoretically, this is due to the speed and rate by which charge carriers can be transported by hopping in organic thin films, transport that depends on the molecular arrangement of the molecules. This strongly suggests a correlation between the morphology of the organic semiconductor and the performance of the OTFT and hence motivated us to carry out an in-situ real time SPM study of organic semiconductor growth as an almost unprecedent experiment with the aim to fully describe the morphological evolution of the ultra-thin film and find the relevant morphological parameters affecting the OTFT electrical response. For the case of 6T on silicon oxide, we have shown that the growth mechanism is 2D+3D, with a roughening transition at the third layer and a rapid roughening. Relevant morphological parameters have been extracted by the AFM images. We also developed an original mathematical model to estimate theoretically and more accurately than before, the capacitance of an EFM tip in front of a metallic substrate. Finally, we obtained Ultra High Vacuum (UHV) AFM images of 6T at lying molecules layer both on silicon oxide and on top of 6T islands. Moreover, we performed ex-situ AFM imaging on a bilayer film composed of pentacene (a p-type semiconductor) and C60 (an n-type semiconductor).