5 resultados para postweld heat treatment

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat treatment of steels is a process of fundamental importance in tailoring the properties of a material to the desired application; developing a model able to describe such process would allow to predict the microstructure obtained from the treatment and the consequent mechanical properties of the material. A steel, during a heat treatment, can undergo two different kinds of phase transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.); in this thesis, an attempt to describe both in a thermodynamically consistent framework is made; a phase field, diffuse interface model accounting for the coupling between thermal, chemical and mechanical effects is developed, and a way to overcome the difficulties arising from the treatment of the non-local effects (gradient terms) is proposed. The governing equations are the balance of linear momentum equation, the Cahn-Hilliard equation and the balance of internal energy equation. The model is completed with a suitable description of the free energy, from which constitutive relations are drawn. The equations are then cast in a variational form and different numerical techniques are used to deal with the principal features of the model: time-dependency, non-linearity and presence of high order spatial derivatives. Simulations are performed using DOLFIN, a C++ library for the automated solution of partial differential equations by means of the finite element method; results are shown for different test-cases. The analysis is reduced to a two dimensional setting, which is simpler than a three dimensional one, but still meaningful.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last 20-30 years, the implementation of new technologies from the research centres to the food industry process was very fast. The infrared thermography is a tool used in many fields, including agriculture and food science technology, because of it's important qualities like non-destructive method, it is fast, it is accurate, it is repeatable and economical. Almost all the industrial food processors have to use the thermal process to obtain an optimal product respecting the quality and safety standards. The control of temperature of food products during the production, transportation, storage and sales is an essential process in the food industry network. This tool can minimize the human error during the control of heat operation, and reduce the costs with personal. In this thesis the application of infrared thermography (IRT) was studies for different products that need a thermal process during the food processing. The background of thermography was presented, and also some of its applications in food industry, with the benefits and limits of applicability. The measurement of the temperature of the egg shell during the heat treatment in natural convection and with hot-air treatment was compared with the calculated temperatures obtained by a simplified finite element model made in the past. The complete process shown a good results between calculated and observed temperatures and we can say that this technique can be useful to control the heat treatments for decontamination of egg using the infrared thermography. Other important application of IRT was to determine the evolution of emissivity of potato raw during the freezing process and the control non-destructive control of this process. We can conclude that the IRT can represent a real option for the control of thermal process from the food industry, but more researches on various products are necessary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lo studio presentato in questa sede concerne applicazioni di saldatura LASER caratterizzate da aspetti di non-convenzionalità ed è costituito da tre filoni principali. Nel primo ambito di intervento è stata valutata la possibilità di effettuare saldature per fusione, con LASER ad emissione continua, su pannelli Aluminum Foam Sandwich e su tubi riempiti in schiuma di alluminio. Lo studio ha messo in evidenza numerose linee operative riguardanti le problematiche relative alla saldatura delle pelli esterne dei componenti ed ha dimostrato la fattibilità relativa ad un approccio di giunzione LASER integrato (saldatura seguita da un post trattamento termico) per la realizzazione della giunzione completa di particolari tubolari riempiti in schiuma con ripristino della struttura cellulare all’interfaccia di giunzione. Il secondo ambito di intervento è caratterizzato dall’applicazione di una sorgente LASER di bassissima potenza, operante in regime ad impulsi corti, nella saldatura di acciaio ad elevato contenuto di carbonio. Lo studio ha messo in evidenza come questo tipo di sorgente, solitamente applicata per lavorazioni di ablazione e marcatura, possa essere applicata anche alla saldatura di spessori sub-millimetrici. In questa fase è stato messo in evidenza il ruolo dei parametri di lavoro sulla conformazione del giunto ed è stata definita l’area di fattibilità del processo. Lo studio è stato completato investigando la possibilità di applicare un trattamento LASER dopo saldatura per addolcire le eventuali zone indurite. In merito all’ultimo ambito di intervento l’attività di studio si è focalizzata sull’utilizzo di sorgenti ad elevata densità di potenza (60 MW/cm^2) nella saldatura a profonda penetrazione di acciai da costruzione. L’attività sperimentale e di analisi dei risultati è stata condotta mediante tecniche di Design of Experiment per la valutazione del ruolo preciso di tutti i parametri di processo e numerose considerazioni relative alla formazione di cricche a caldo sono state suggerite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas separation membranes of high CO2 permeability and selectivity have great potential in both natural gas sweetening and carbon dioxide capture. Many modified PIM membranes results permselectivity above Robinson upper bound. The big problem that should be solved for these polymers to be commercialized is their aging through time. In high glassy polymeric membrane such as PIM-1 and its modifications, solubility selectivity has more contribution towards permselectivity than diffusivity selectivity. So in this thesis work pure and mixed gas sorption behavior of carbon dioxide and methane in three PIM-based membranes (PIM-1, TZPIM-1 and AO-PIM-1) and Polynonene membrane is rigorously studied. Sorption experiment is performed at different temperatures and molar fraction. Sorption isotherms found from the experiment shows that there is a decrease of solubility as the temperature of the experiment increases for both gases in all polymers. There is also a decrease of solubility due to the presence of the other gas in the system in the mixed gas experiments due to competitive sorption effect. Variation of solubility is more visible in methane sorption than carbon dioxide, which will make the mixed gas solubility selectivity higher than that of pure gas solubility selectivity. Modeling of the system using NELF and Dual mode sorption model estimates the experimental results correctly Sorption of gases in heat treated and untreated membranes show that the sorption isotherms don’t vary due to the application of heat treatment for both carbon dioxide and methane. But there is decrease in the diffusivity coefficient and permeability of pure gases due to heat treatment. Both diffusivity coefficient and permeability decreases with increasing of heat treatment temperature. Diffusivity coefficient calculated from transient sorption experiment and steady state permeability experiment is also compared in this thesis work. The results reveal that transient diffusivity coefficient is higher than steady state diffusivity selectivity.