7 resultados para positron
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Background: MPLC represents a diagnostic challenge. Topic of the discussion is how to distinguish these patients as a metastatic or a multifocal disease. While in case of the different histology there are less doubt on the opposite in case of same histology is mandatory to investigate on other clinical features to rule out this question. Matherials and Methods: A retrospective review identified all patients treated surgically for a presumed diagnosis of SPLC. Pre-operative staging was obtained with Total CT scan and fluoro-deoxy positron emission tomography and mediastinoscopy. Patients with nodes interest or extra-thoracic location were excluded from this study. Epidermal growth factor receptor (EGFR) expression with complete immunohistochemical analisis was evaluated. Survival was estimated using Kaplan-Meyer method, and clinical features were estimated using a long-rank test or Cox proportional hazards model for categorical and continuous variable, respectively. Results: According to American College Chest Physician, 18 patients underwent to surgical resection for a diagnosis of MPLC. Of these, 8 patients had 3 or more nodules while 10 patients had less than 3 nodules. Pathologic examination demonstrated that 13/18(70%) of patients with multiple histological types was Adenocarcinoma, 2/18(10%) Squamous carcinoma, 2/18(10%) large cell carcinoma and 1/18(5%) Adenosquamosu carcinoma. Expression of EGFR has been evaluated in all nodules: in 7 patients of 18 (38%) the percentage of expression of each nodule resulted different. Conclusions: MPLC represent a multifocal disease where interactions of clinical informations with biological studies reinforce the diagnosis. EGFR could contribute to differentiate the nodules. However, further researches are necessary to validate this hypothesis.
Resumo:
AMS-02 is running after great scientific goals since one year and a half: a final setting up for dark matter searches has been achieved, allowing to study the so important antiparticle to particle ratios, which will probably be the first dark matter signals ever corroborated. Even if primary cosmic rays fluxes are subjected to a lot of uncertainties sources, some statements can be done and have been written down about dark matter properties: DM should be a heavy Majorana fermion or Spin 0 or 1 boson, with a mass from about 1 TeV to 10 TeV - unveiling a new TeV-ish search age - which could be able to originate antiparticle fluxes enhancements at high energies, both for positrons and antiprotons. All the observations, direct and indirect, point to these new paradigms or can be traced back to them quite easily. These enhancements perfectly fall into the research window of AMS-02, allowing the experiment to attack each today credible theory. Also an investigation of the Sommerfeld effect-associated dark boson will be possible, in terms of antiparticle to particle ratios substructures. The first great AMS-02 measurement is the positron fraction: an official paper is going to be submitted in few months, where the correct behavior of the apparatus will be reviewed and the full positron fraction rate will be analyzed up to 200 GeV. In this concern, one of the objectives of this work is to test the AMS-02 capability and versatility in doing these dark matter researches, thanks to an orbital temporal (and geomagnetic) stability. The goal has been accomplished: the experiment is very stable in time, so that the temporal error associated to the positron fraction measurement is compatible with zero, offering a beyond belief opportunity to measure CR antiparticle to particle ratios.
Resumo:
In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.
Resumo:
Objective The objective of this study was to develop a clinical nomogram to predict gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA-11-PET/CT) positivity in different clinical settings of PSA failure. Materials and methods Seven hundred three (n = 703) prostate cancer (PCa) patients with confirmed PSA failure after radical therapy were enrolled. Patients were stratified according to different clinical settings (first-time biochemical recurrence [BCR]: group 1; BCR after salvage therapy: group 2; biochemical persistence after radical prostatectomy [BCP]: group 3; advanced stage PCa before second-line systemic therapies: group 4). First, we assessed 68Ga-PSMA-11-PET/CT positivity rate. Second, multivariable logistic regression analyses were used to determine predictors of positive scan. Third, regression-based coefficients were used to develop a nomogram predicting positive 68Ga-PSMA-11-PET/CT result and 200 bootstrap resamples were used for internal validation. Fourth, receiver operating characteristic (ROC) analysis was used to identify the most informative nomogram’s derived cut-off. Decision curve analysis (DCA) was implemented to quantify nomogram’s clinical benefit. Results 68Ga-PSMA-11-PET/CT overall positivity rate was 51.2%, while it was 40.3% in group 1, 54% in group 2, 60.5% in group 3, and 86.9% in group 4 (p < 0.001). At multivariable analyses, ISUP grade, PSA, PSA doubling time, and clinical setting were independent predictors of a positive scan (all p ≤ 0.04). A nomogram based on covariates included in the multivariate model demonstrated a bootstrap-corrected accuracy of 82%. The nomogram-derived best cut-off value was 40%. In DCA, the nomogram revealed clinical net benefit of > 10%. Conclusions This novel nomogram proved its good accuracy in predicting a positive scan, with values ≥ 40% providing the most informative cut-off in counselling patients to 68Ga-PSMA-11-PET/CT. This tool might be important as a guide to clinicians in the best use of PSMA-based PET imaging.
Resumo:
Introduction Only a proportion of patients with advanced NSCLC benefit from Immune checkpoint blockers (ICBs). No biomarker is validated to choose between ICBs monotherapy or in combination with chemotherapy (Chemo-ICB) when PD-L1 expression is above 50%. The aim of the present study is to validate the biomarker validity of total Metabolic Tumor Volume (tMTV) as assessed by 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) Material and methods This is a multicentric retrospective study. Patients with advanced NSCLC treated with ICBs, chemotherapy plus ICBs and chemotherapy were enrolled in 12 institutions from 4 countries. Inclusion criteria was a positive PET scan performed within 42 days from treatment start. TMTV was analyzed at each center based on a 42% SUVmax threshold. High tMTV was defined ad tMTV>median Results 493 patients were included, 163 treated with ICBs alone, 236 with chemo-ICBs and 94 with CT. No correlation was found between PD-L1 expression and tMTV. Median PFS for patients with high tMTV (100.1 cm3) was 3.26 months (95% CI 1.94–6.38) vs 14.70 (95% CI 11.51–22.59) for those with low tMTV (p=0.0005). Similarly median OS for pts with high tMTV was 11.4 months (95% CI 8.42 – 19.1) vs 33.1 months for those with low tMTV (95% CI 22.59 – NA), p .00067. In chemo-ICBs treated patients no correlation was found for OS (p = 0.11) and a borderline correlation was found for PFS (p=0.059). Patients with high tMTV and PD-L1 ≥ 50% had a better PFS when treated with combination of chemotherapy and ICBs respect to ICBs alone, with 3.26 months (95% CI 1.94 – 5.79) for ICBs vs 11.94 (95% CI 5.75 – NA) for Chemo ICBs (p = 0.043). Conclusion tMTV is predictive of ICBs benefit, not to CT benefit. tMTV can help to select the best upfront strategy in patients with high tMTV.
Resumo:
The tobacco epidemic is a public health burden. Nicotine-Delivery-Systems(NDS) are devices designed to help people replace conventional cigarette(CC) and among these devices we find electronic cigarettes(e-cig), which are classified as Electronic-NDS(ENDS). E-cigs use different technologies to vaporize a liquid or to heat the tobacco avoiding the combustion phenomenon(IQOS). The US Food and Drug Administration(FDA) has labelled IQOS as modified risk tobacco products(MRTPs), indirectly encouraging the perception of safety in the consumers, but IQOS smoke, although to a lesser extent than conventional, still presents a great deal of harmful or potentially harmful compounds. My PhD thesis aims to study the toxic effects related to IQOS exposure. I sought to answer the question of whether the toxic compounds released by IQOS, albeit in reduced concentrations, could lead to genotoxicity and damage to the airways and liver in vivo. At the University of Nottingham, I have investigated in vitro the effects generated by the IQOS, e-cigs and CC exposure on PBMCs and human lung epithelial cell line. Finally, at University of Milano–Bicocca, I have developed a in vivo Positron Emission computed Tomography(PET) imaging procedure meant to be applied to the monitoring of ENDS toxicity, particularly in the brain. These results indicate that IQOS is not a low-risk product in vivo, for primary target organs but also for secondary organs, although we have observed a small impact in vitro. Labelling as MRTP may mislead consumers who interpret “a lower level of toxic compounds” as an indication of “harmlessness” when there is a health risk for users. In the last part, I set up a methodology for studying temporal fluctuations of regional brain metabolism and connectivity derived from mice of different ages allowing researchers to obtain normative values in investigations of the efficacy or toxicity of substances at the functional level of the CNS.
Resumo:
The treatment of metastatic castration-resistant prostate cancer (mCRPC) is currently characterized by several drugs with different mechanisms of action, such as new generation hormonal agents (abiraterone, enzalutamide), chemotherapy (docetaxel, cabazitaxel), PARP inhibitors (olaparib) and radiometabolic therapies (radium-223, LuPSMA). There is an urgent need to identify biomarkers to guide personalized therapy in mCRPC. In recent years, the status of androgen receptor (AR) gene detected in liquid biopsy has been associated with outcomes in patients treated with abiraterone or enzalutamide. More recently, plasma tumor DNA (ptDNA) and its changes during treatment have been identified as early indicators of response to anticancer treatments. Recent works also suggested a potential role of tumor-related metabolic parameters of 18Fluoro-Choline Positron Emission Tomography (F18CH-PET)-computed tomography (CT) as a prognostic tool in mCRCP. Other clinical features, such as the presence of visceral metastases, have been correlated with outcome in mCRPC patients. Recent studies conducted by our research group have designed and validated a prognostic model based on the combination of molecular characteristics (ptDNA levels), metabolic features found in basal FCH PET scans (metabolic tumor volume values, MTV), clinical parameters (absence or presence of visceral metastases), and laboratory tests (serum lactate dehydrogenase levels, LDH). Within this PhD project, 30 patients affected by mCRPC, pre-treated with abiraterone or enzalutamide, candidate for taxane-based treatments (docetaxel or cabazitaxel), have been prospectively evaluated. The prognostic model previously described was applied to this population, to interrogate its prognostic power in a more advanced cohort of patients, resulting in a further external validation of the tool.