2 resultados para poroelastic
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Porous materials are widely used in many fields of industrial applications, to achieve the requirements of noise reduction, that nowadays derive from strict regulations. The modeling of porous materials is still a problematic issue. Numerical simulations are often problematic in case of real complex geometries, especially in terms of computational times and convergence. At the same time, analytical models, even if partly limited by restrictive simplificative hypotheses, represent a powerful instrument to capture quickly the physics of the problem and general trends. In this context, a recently developed numerical method, called the Cell Method, is described, is presented in the case of the Biot's theory and applied for representative cases. The peculiarity of the Cell Method is that it allows for a direct algebraic and geometrical discretization of the field equations, without any reduction to a weak integral form. Then, the second part of the thesis presents the case of interaction between two poroelastic materials under the context of double porosity. The idea of using periodically repeated inclusions of a second porous material into a layer composed by an original material is described. In particular, the problem is addressed considering the efficiency of the analytical method. A analytical procedure for the simulation of heterogeneous layers based is described and validated considering both conditions of absorption and transmission; a comparison with the available numerical methods is performed. ---------------- I materiali porosi sono ampiamente utilizzati per diverse applicazioni industriali, al fine di raggiungere gli obiettivi di riduzione del rumore, che sono resi impegnativi da norme al giorno d'oggi sempre più stringenti. La modellazione dei materiali porori per applicazioni vibro-acustiche rapprensenta un aspetto di una certa complessità. Le simulazioni numeriche sono spesso problematiche quando siano coinvolte geometrie di pezzi reali, in particolare riguardo i tempi computazionali e la convergenza. Allo stesso tempo, i modelli analitici, anche se parzialmente limitati a causa di ipotesi semplificative che ne restringono l'ambito di utilizzo, rappresentano uno strumento molto utile per comprendere rapidamente la fisica del problema e individuare tendenze generali. In questo contesto, un metodo numerico recentemente sviluppato, il Metodo delle Celle, viene descritto, implementato nel caso della teoria di Biot per la poroelasticità e applicato a casi rappresentativi. La peculiarità del Metodo delle Celle consiste nella discretizzazione diretta algebrica e geometrica delle equazioni di campo, senza alcuna riduzione a forme integrali deboli. Successivamente, nella seconda parte della tesi viene presentato il caso delle interazioni tra due materiali poroelastici a contatto, nel contesto dei materiali a doppia porosità. Viene descritta l'idea di utilizzare inclusioni periodicamente ripetute di un secondo materiale poroso all'interno di un layer a sua volta poroso. In particolare, il problema è studiando il metodo analitico e la sua efficienza. Una procedura analitica per il calcolo di strati eterogenei di materiale viene descritta e validata considerando sia condizioni di assorbimento, sia di trasmissione; viene effettuata una comparazione con i metodi numerici a disposizione.
Resumo:
This dissertation aims at developing advanced analytical tools able to model surface waves propagating in elastic metasurfaces. In particular, four different objectives are defined and pursued throughout this work to enrich the description of the metasurface dynamics. First, a theoretical framework is developed to describe the dispersion properties of a seismic metasurface composed of discrete resonators placed on a porous medium considering part of it fully saturated. Such a model combines classical elasticity theory, Biot’s poroelasticity and an effective medium approach to describe the metasurface dynamics and its coupling with the poroelastic substrate. Second, an exact formulation based on the multiple scattering theory is developed to extend the two-dimensional classical Lamb’s problem to the case of an elastic half-space coupled to an arbitrary number of discrete surface resonators. To this purpose, the incident wavefield generated by a harmonic source and the scattered field generated by each resonator are calculated. The substrate wavefield is then obtained as solutions of the coupled problem due to the interference of the incident field and the multiple scattered fields of the oscillators. Third, the above discussed formulation is extended to three-dimensional contexts. The purpose here is to investigate the dynamic behavior and the topological properties of quasiperiodic elastic metasurfaces. Finally, the multiple scattering formulation is extended to model flexural metasurfaces, i.e., an array of thin plates. To this end, the resonant plates are modeled by means of their equivalent impedance, derived by exploiting the Kirchhoff plate theory. The proposed formulation permits the treatment of a general flexural metasurface, with no limitation on the number of plates and the configuration taken into account. Overall, the proposed analytical tools could pave the way for a better understanding of metasurface dynamics and their implementation in engineered devices.