3 resultados para population estimation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last couple of decades we assisted to a reappraisal of spatial design-based techniques. Usually the spatial information regarding the spatial location of the individuals of a population has been used to develop efficient sampling designs. This thesis aims at offering a new technique for both inference on individual values and global population values able to employ the spatial information available before sampling at estimation level by rewriting a deterministic interpolator under a design-based framework. The achieved point estimator of the individual values is treated both in the case of finite spatial populations and continuous spatial domains, while the theory on the estimator of the population global value covers the finite population case only. A fairly broad simulation study compares the results of the point estimator with the simple random sampling without replacement estimator in predictive form and the kriging, which is the benchmark technique for inference on spatial data. The Monte Carlo experiment is carried out on populations generated according to different superpopulation methods in order to manage different aspects of the spatial structure. The simulation outcomes point out that the proposed point estimator has almost the same behaviour as the kriging predictor regardless of the parameters adopted for generating the populations, especially for low sampling fractions. Moreover, the use of the spatial information improves substantially design-based spatial inference on individual values.