4 resultados para polyruethane elastomers

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric Elastomers (DE) are incompressible dielectrics which can experience deviatoric (isochoric) finite deformations in response to applied large electric fields. Thanks to the strong electro-mechanical coupling, DE intrinsically offer great potentialities for conceiving novel solid-state mechatronic devices, in particular linear actuators, which are more integrated, lightweight, economic, silent, resilient and disposable than equivalent devices based on traditional technologies. Such systems may have a huge impact in applications where the traditional technology does not allow coping with the limits of weight or encumbrance, and with problems involving interaction with humans or unknown environments. Fields such as medicine, domotic, entertainment, aerospace and transportation may profit. For actuation usage, DE are typically shaped in thin films coated with compliant electrodes on both sides and piled one on the other to form a multilayered DE. DE-based Linear Actuators (DELA) are entirely constituted by polymeric materials and their overall performance is highly influenced by several interacting factors; firstly by the electromechanical properties of the film, secondly by the mechanical properties and geometry of the polymeric frame designed to support the film, and finally by the driving circuits and activation strategies. In the last decade, much effort has been focused in the devolvement of analytical and numerical models that could explain and predict the hyperelastic behavior of different types of DE materials. Nevertheless, at present, the use of DELA is limited. The main reasons are 1) the lack of quantitative and qualitative models of the actuator as a whole system 2) the lack of a simple and reliable design methodology. In this thesis, a new point of view in the study of DELA is presented which takes into account the interaction between the DE film and the film supporting frame. Hyperelastic models of the DE film are reported which are capable of modeling the DE and the compliant electrodes. The supporting frames are analyzed and designed as compliant mechanisms using pseudo-rigid body models and subsequent finite element analysis. A new design methodology is reported which optimize the actuator performances allowing to specifically choose its inherent stiffness. As a particular case, the methodology focuses on the design of constant force actuators. This class of actuators are an example of how the force control could be highly simplified. Three new DE actuator concepts are proposed which highlight the goodness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research for new biocompatible and easily implantable materials continuously proposes new molecules and new substances with biological, chemical and physical characteristics, that are more and more adapted to aesthetic and reconstructive surgery and to the development of biomedical devices such as cardiovascular prostheses. Two classes of polymeric biomaterials seem to meet better these requirements: “hydrogels” , which includes polyalkylimide (PAI) and polyvinylalcohol (PVA) and “elastomers”, which includes polyurethanes (PUs). The first ones in the last decade have had a great application for soft tissue augmentation, due to their similarity to this tissue for their high water content, elasticity and oxygen permeability (Dini et al., 2005). The second ones, on the contrary, are widely used in cardiovascular applications (catheters, vascular grafts, ventricular assist devices, total artificial hearts) due to their good mechanical properties and hemocompatibility (Zdrahala R.J. and Zdrahala I.J., 1999). In the biocompatibility evaluation of these synthetic polymers, that is important for its potential use in clinical applications, a fundamental aspect is the knowledge of the polymers cytotoxicity and the effect of their interaction with cells, in particular with the cell populations involved in the inflammatory responses, i.e. monocyte/macrophages. In consideration of what above said, the aim of this study is the comprehension of the in vitro effect of PAI, PVA and PU on three cell lines that represent three different stages of macrophagic differentiation: U937 pro-monocytes, THP-1 monocytes and RAW 264.7 macrophages. Cytotoxicity was evaluated by measuring the rate of viability with MTT, Neutral Red and morphological analysis at light microscope in time-course dependent experiments. The influence of these polymers on monocyte/macrophage activation in terms of cells adhesion, monocyte differentiation in macrophages, antigens distribution, aspecific phagocytosis, fluid-phase endocitosis, pro-inflammatory cytokine (TNF-α, IL-1β, IL-6) and nitric oxide (NO) release was evaluated. In conclusion, our studies have indicated that the three different polymeric biomaterials are highly biocompatible, since they scarcely affected viability of U937, THP-1 and RAW 264.7 cells. Moreover, we have found that even though hydrogels and polyurethane influences monocyte/macrophage differentiation (depending on the particular type of cell and polymer), they are immunocompatible since they not induced significantly high cytokine release. For these reasons their clinical applications are strongly encouraged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this PhD thesis was to study at a microscopic level different liquid crystal (LC) systems, in order to determine their physical properties, resorting to two distinct methodologies, one involving computer simulations, and the other spectroscopic techniques, in particular electron spin resonance (ESR) spectroscopy. By means of the computer simulation approach we tried to demonstrate this tool effectiveness for calculating anisotropic static properties of a LC material, as well as for predicting its behaviour and features. This required the development and adoption of suitable molecular models based on a convenient intermolecular potentials reflecting the essential molecular features of the investigated system. In particular, concerning the simulation approach, we have set up models for discotic liquid crystal dimers and we have studied, by means of Monte Carlo simulations, their phase behaviour and self­-assembling properties, with respect to the simple monomer case. Each discotic dimer is described by two oblate Gay­Berne ellipsoids connected by a flexible spacer, modelled by a harmonic "spring" of three different lengths. In particular we investigated the effects of dimerization on the transition temperatures, as well as on the characteristics of molecular aggregation displayed and the relative orientational order. Moving to the experimental results, among the many experimental techniques that are typically employed to evaluate LC system distinctive features, ESR has proved to be a powerful tool in microscopic scale investigation of the properties, structure, order and dynamics of these materials. We have taken advantage of the high sensitivity of the ESR spin probe technique to investigate increasingly complex LC systems ranging from devices constituted by a polymer matrix in which LC molecules are confined in shape of nano- droplets, as well as biaxial liquid crystalline elastomers, and dimers whose monomeric units or lateral groups are constituted by rod-like mesogens (11BCB). Reflection-mode holographic-polymer dispersed liquid crystals (H-PDLCs) are devices in which LCs are confined into nanosized (50­-300 nm) droplets, arranged in layers which alternate with polymer layers, forming a diffraction grating. We have determined the configuration of the LC local director and we have derived a model of the nanodroplet organization inside the layers. Resorting also to additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross-section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi- monodomain aligned along the nanodroplet long axis. The results suggest that the molecular organization is dictated mainly by the confinement, explaining, at least in part, the need for switching voltages significantly higher and the observed faster turn-off times in H-PDLCs compared to standard PDLC devices. Liquid crystal elastomers consist in cross-linked polymers, in which mesogens represent the monomers constituting the main chain or the laterally attached side groups. They bring together three important aspects: orientational order in amorphous soft materials, responsive molecular shape and quenched topological constraints. In biaxial nematic liquid crystalline elastomers (BLCEs), two orthogonal directions, rather than the one of normal uniaxial nematic, can be controlled, greatly enhancing their potential value for applications as novel actuators. Two versions of a side-chain BLCEs were characterized: side­-on and end­-on. Many tests have been carried out on both types of LCE, the main features detected being the lack of a significant dynamical behaviour, together with a strong permanent alignment along the principal director, and the confirmation of the transition temperatures already determined by DSC measurements. The end­-on sample demonstrates a less hindered rotation of the side group mesogenic units and a greater freedom of alignment to the magnetic field, as already shown by previous NMR studies. Biaxial nematic ESR static spectra were also obtained on the basis of Molecular Dynamics generated biaxial configurations, to be compared to the experimentally determined ones, as a mean to establish a possible relation between biaxiality and the spectral features. This provides a concrete example of the advantages of combining the computer simulation and spectroscopic approaches. Finally, the dimer α,ω-bis(4'-cyanobiphenyl-4-yl)undecane (11BCB), synthesized in the "quest" for the biaxial nematic phase has been analysed. Its importance lies in the dimer significance as building blocks in the development of new materials to be employed in innovative technological applications, such as faster switching displays, resorting to the easier aligning ability of the secondary director in biaxial phases. A preliminary series of tests were performed revealing the population of mesogenic molecules as divided into two groups: one of elongated straightened conformers sharing a common director, and one of bent molecules, which display no order, being equally distributed in the three dimensions. Employing this model, the calculated values show a consistent trend, confirming at the same time the transition temperatures indicated by the DSC measurements, together with rotational diffusion tensor values that follow closely those of the constituting monomer 5CB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante l'attività di ricerca sono stati sviluppati tre progetti legati allo sviluppo e ottimizzazione di materiali compositi. In particolare, il primo anno, siamo andati a produrre materiali ceramici ultrarefrattari tenacizzati con fibre di carburo di silicio, riuscendo a migliorare il ciclo produttivo e ottenendo un materiale ottimizzato. Durante il secondo anno di attività ci siamo concentrati nello sviluppo di resine epossidiche rinforzate con particelle di elastomeri florurati che rappresentano un nuovo materiale non presente nel mercato utile per applicazioni meccaniche e navali. L'ultimo anno di ricerca è stato svolto presso il laboratorio materiali di Ansaldo Energia dove è stato studiato il comportamenteo di materiali per turbine a gas.