2 resultados para plumifer species group

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dichloroindium hydride revealed to be a valid alternative to tributyltin hydride for radical reduction of organic (alkyl, aryl, acyl, solfonyl) azides. The new approach entails mild reaction conditions and provides high yields of the corresponding amines and amides, also showing high degrees of selectivity. The system dichloroindium hydride / azides can be utilised in fivemembered ring closures of g-azidonitriles, as a new source of aminyl radicals for the attractive synthesis of interesting amidine compounds in the absence of both toxic reagents and tedious purification procedures. Allylindium dichloride seems a good substitute for dichloroindium hydride for generation of indium centred radicals under photolytic conditions, since it allows allylation of electrophilic azides (e.g. phenylsulfonyl azide) and halogen or ester δ-substituted azides, the latter through a 1,5-H transfer rearrangement mechanism. Evidences of the radical nature of the reactions mechanism were provided by ESR spectroscopy, furthermore the same technique, allowed to discover that the reaction of azides with indium trichloride and other group XIII Lewis acids, in particular gallium trichloride, gives rise to strongly coloured, persistent paramagnetic species, whose structure is consistent with the radical cation of the head-to-tail dimer of the aniline corresponding to the starting azide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the course of my Ph.D. in the laboratories directed by Prof. Alfredo Ricci at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, I was involved in the study and the application of a number of organocatalytic systems, all coming from the natural chiral pool. The first part of this thesis will be devoted to new homogeneous organocatalytic reactions promoted by Cinchona alkaloid-based organocatalysts. Quinine based catalysts were found to be a very effective catalyst for Diels-Alder reactions involving 3-vinylindoles. Excellent results in terms of yields and enantioselectivities were achieved, outlining also a remarkable organocatalytic operational mode mimicking enzymatic catalysis. The same reaction with 2-vinylindoles showed a completely different behaviour resulting in an unusual resolution-type process. The asymmetric formal [3+2] cycloaddition with in situ generated N-carbamoyl nitrones using Cinchona-derived quaternary ammonium salts as versatile catalysts under phase transfer conditions, outlines another application in organocatalysis of this class of alkaloids. During the seven months stage in the Prof. Helma Wennemers’ group at the Department of Chemistry of the University of Basel (Switzerland) I have been involved in organocatalysis promoted by oligopeptides. My contribution regarded the 1,4-addition reaction of aldehydes to nitroolefins. In the work performed at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, in collaboration with the ‘Institut Charles Gerhardt-Montpellier, of Montpellier (France) the possibility of performing for the first time heterogeneous organocatalysis by using a natural polysaccharide biopolymer as the source of chirality was disclosed. With chitosan, derived from deacetylation of chitin, a highly enantioselective heterogeneous organocatalytic aldol reaction could be performed. The use of an eco-friendly medium such as water, the recyclability of the catalytic specie and the renewable nature of the polysaccharide are assets of this new approach in organocatalysis and open interesting perspectives for the use of biopolymers.