11 resultados para physiology and biophysics

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weaning is a crucial period in the management of piglets. In modern piggeries economic interest make weaning age decrease more and more and the detrimental consequences of weaning have as much importance as earlier the weaning occurs. The risk of development of post-weaning diarrhea (PWD) in piglets is high and PWD is the cause of serious economic losses in pig herds. In the past the supplementation of the feed given after weaning with growth promoters antibiotics, in order to keep PWD under control, used to be a common practice, but their usage has been banned in EU since 2006. This measure led to the investigation of alternative suitable feed supplements that would be reasonably efficient in protecting and sustaining animal health and performance. Aim of this thesis was to evaluate the effect of some different alternatives to growth-promoters antibiotics on weaning piglets and to assess if some of them could be considered as valuables options to replace auxinic in animal feeding. The study is composed by four experimental trials. The first one aims to identify mechanisms involved in the auxinic effects of antibiotics in the diets; the following three evaluate the addition butyric acid, tryptophan, and nitrate as alternative to in-feed antimicrobials. Although some results are controversial, it appears from the data presented that the alternatives to in-feed antibiotics considered may exert positive effects on some zootechnical and health parameters on piglet in the post-weaning period. Anyway, the mechanism of action and the interaction with microbiota of such additives should be investigated inside out because many effects remains poorly understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In organic and biodynamic vineyards, canopy management practices should be carefully and timely modulated, particularly in a context of climate change, for successfully achieving balanced plants, ventilated and exposed berries, elevated grape and wine quality. In 2013 and 2014, characterized by contrasting climatic conditions, the implications of post-veraison (late) or pea-size trimming, post-veraison or pre-harvest late defoliations and shoot-positioning (post-veraison) were assessed against long-shoots non treated controls, under field conditions on organically-cultivated cv. Sangiovese. The key agronomic and enological relevance of late trimming and defoliations clearly emerged in both seasons. Berry skin phenolics (e.g. anthocyanins, flavonols) increased markedly, without changes in technological parameters. In case of early trimming, such positive effects were observed only in 2013. Maintaining long shoots for shading decreased anthocyanins, flavonols and total phenolics concentrations and promoted the production of compact bunches. Experimental data strongly designated late trimming, a practice proved to contain yield and bunch compactness, as a valuable alternative to cluster thinning. Late trimming, defoliations and shoot positioning reduced the severity of Botrytis cluster rot. The highest levels of berry skins phenolic compounds in late trimmed and defoliated plants could have contributed control the severity of this pathogen. The enological benefits induced by late trimming and defoliations and shoot positioning emerged in both young and aged wines. For the first time, cell cultures from cv. Sangiovese berry tissues were obtained and enabled to investigate, in controlled conditions, the relations between mechanisms regulating secondary metabolism in grapevine cells and changes induced by environmental and agronomic factors. The Doctoral Dissertation strongly highlights the need to consider, for a proper interpretation of the multiple modifications induced by canopy management strategies, physiological mechanisms other than the canonic source-sink relationships, in particular their impact on the vine hormonal status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this thesis was to study the response mechanisms of grapevine to Fe-deficiency and to potential Fe chlorosis prevention strategies. The results show that the presence of bicarbonate in the nutrient solution shifted the activity of PEPC and TCA cycle enzymes and the accumulation/translocation of organic acids in roots of Fe-deprived plants. The rootstock 140 Ruggeri displayed a typical behavior of calcicole plants under bicarbonate stress. The Fe chlorosis susceptible rootstock 101-14 reacted to a prolonged Fe-deficiency reducing the root activity of PEPC and MDH. Noteworthy, it accumulates high levels of citric acid in roots, indicating a low capacity to utilizing, transporting and/or exudating organic acids into the rhizosfere. In contrast, 110 Richter rootstock is capable to maintain an active metabolism of organic acids in roots, accumulating them to a lesser extent than 101-14. Similarly to 101-14, SO4 genotype displays a strong decrease of mechanisms associated to Fe chlorosis tolerance (PEPC and MDH enzymes). Nevertheless it is able to avoid excessive accumulation of citric acid in roots, similar as 110 Richter rootstock. Intercropping with Festuca rubra increased leaf chlorophyll content and net photosynthesis. In addition, intercropping reduces the activity of PEPC in roots, similary to Fe-chelate supply. Applications of NH4+ with nitrification inhibitor prevents efficiently Fe-deficiency, increases chlorophyll content, and induces similar root biochemical responses as Fe-EDDHA. Without the addition of nitrification inhibitors, the effectiveness of NH4+ supply on Fe chlorosis prevention resulted significantly lower. The aspects intertwined in this investigation highlight the complexity of Fe physiology and the fine metabolic tuning of grapevine genotypes to Fe availability and soil-related environmental factors. The experimental evidences reveal the need to carry out future researches on Fe nutrition maintaining a continous flow of knowledge between theoretical and agronomical perspectives for fully supporting the efforts devoted to convert science into practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The normal gut microbiota has several important functions in host physiology and metabolism, and plays a key role in health and disease. Bifidobacteria, which are indigenous components of gastrointestinal microbiota, may play an important role in maintaining the well-being of the host although its precise function is very difficult to study. Its physiological and biochemical activities are controlled by many factors, particularly diet and environment. Adherence and colonization capacity are considered as contributing factors for immune modulation, pathogen exclusion, and enhanced contact with the mucosa. In this way, bifidobacteria would fortify the microbiota that forms an integral part of the mucosal barrier and colonization resistance against pathogens. Bifidobacteria are not only subjected to stressful conditions in industrial processes, but also in nature, where the ability to respond quickly to stress is essential for survival. Bifidobacteria, like other microorganisms, have evolved sensing systems for/and defences against stress that allow them to withstand harsh conditions and sudden environmental changes. Bacterial stress responses rely on the coordinated expression of genes that alter various cellular processes and structures (e.g. DNA metabolism, housekeeping genes, cell-wall proteins, membrane composition) and act in concert to improve bacterial stress tolerance. The integration of these stress responses is accomplished by regulatory networks that allow the cell to react rapidly to various and sometimes complex environmental changes. This work examined the effect of important stressful conditions, such as changing pH and osmolarity, on the biosynthesis of cell wall proteins in B. pseudolongum subsp. globosum. These environmental factors all influence heavily the expression of BIFOP (BIFidobacterial Outer Proteins) in the cell-wall and can have an impact in the interaction with host. Also evidence has been collected linking the low concentration of sugar in the culture medium with the presence or absence of extracromosomal DNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questo lavoro traccia un quadro della diffusione e trasmissione delle conoscenze riguardanti l’anatomia e la fisiologia del corpo umano nel mondo iranico in età sasanide (III-VII sec. d.C.). La tesi analizza il ruolo delle scuole di medicina in territorio iranico, come quelle sorte a Nisibi e Gundēšābūr, delle figure dei re sasanidi interessati alla filosofia e alla scienza greca, e dei centri di studio teologico e medico che, ad opera dei cristiani siro-orientali, si fecero promotori della conoscenza medico-scientifica greca in terra d’Iran.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite current evidence is in strong disagreement with an emergency for the conservation of Apis mellifera, great concern is related to profitability of beekeeping operations. A growing involvement of veterinary science in addressing bee health topics will therefore be fundamental to preserve and protect the entire sector. The experiments in this thesis focused on two different and interdependent levels related to bee health: the biochemical level and the parasitological level. At the biochemical level the impact of plant protection products on bee physiology and survival was studied, elucidating synergistic interactions between poor nutrition and pesticide exposure in A. mellifera and between an insecticide and a fungicide in Osmia bicornis. Moreover, an innovative fingerprinting approach on honey bee haemolymph was applied to detect population imbalances in the hive. The control of Varroa infestations was studied both at the biochemical and parasitological level. A panel of biomarkers in honey bee haemolymph was applied to compare different mite control protocols. This resulted in relevant indications for beekeeping operations pursuing the least impact on nutritional status of the colonies. To guide the decision making of beekeepers, a new formic acid evaporator was tested in comparison with a more established one. Considering its widespread distribution in the country, efforts were directed also towards N. ceranae. In particular, the pivotal aspect of diagnosis was studied, proposing a new qPCR method to overcome some limits of the existing ones. In conclusion, this works fills some of the knowledge gaps of the beekeeping sector. However, many of them still need to be addressed and the upcoming menaces of climate change and dispersal of pathogens via globalization should be targeted by research efforts in the near future. Therefore, a multifaceted vision of bee health is of capital importance, aware of the complementarity of reductionist and holistic approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Around 5 million women give birth each year in Europe and, while breastfeeding, the majority of them may need to take medications, either occasionally or continuously. Unfortunately, there is often scarce evidence of trustworthy information about how a specific molecule might affect the physiology of lactation. This is the reason that brought a European public-private partnership to fund the development of a reliable platform to provide women and health-care professionals a helpful instrument to reduce uncertainty about the effects of medication used during breastfeeding. On April 1st 2019, the ConcePTION project (Grant Agreement n°821520) started to develop such envisaged platform. The 3rd Work Package was in charge of the validation of in vitro, in vivo and in silico lactation models. Between the numerous species currently used in preclinical studies, pigs’ similarities with humans’ anatomy, physiology and genomics make them extremely useful as translational models, when proper veterinary expertise is applied. The ASA team from the University of Bologna, went first to characterize the translational lactation model using the swine species, chosen upon literature review. The aim of this work was to lay the foundations of a porcine lactation model that could be suitable for application within pharmaceutical tests, to study drug transfer through milk prior approval and commercialization. The obtained results highlighted both strengths and critical points of the study design, allowing a significant improvement in the knowledge of pharmacokinetic physiology in lactating mammals. Lastly, this project allowed the assessment of microbial changes in gut resident bacteria of newborns through an innovative in vitro colonic model. Indeed, even if there were no evident adverse effects determined by drug residues in milk, possible alterations in the delicate microbial ecology of newborns’ gastrointestinal tract was considered pivotal, giving its possible impact on the individual health and growth.