6 resultados para physiological strain index
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
L’ictus è un importante problema di salute pubblica, è causa di morte e disabilità nella popolazione anziana. La necessità di strategie di prevenzione secondaria e terziaria per migliorare il funzionamento post-ictus e prevenire o ritardare altre condizioni disabilitanti, ha portato l’Italia a sviluppare un intervento di Attività Fisica Adattata (AFA) per l’ictus, che permettesse di migliorare gli esiti della riabilitazione. Obiettivo dello studio è di valutare se l’AFA unita all’Educazione Terapeutica (ET), rispetto al trattamento riabilitativo standard, migliora il funzionamento e la qualità di vita in pazienti con ictus. Studio clinico non randomizzato, in cui sono stati valutati 229 pazienti in riabilitazione post-ictus, 126 nel gruppo sperimentale (AFA+ET) e 103 nel gruppo di controllo. I pazienti sono stati valutati al baseline, a 4 e a 12 mesi di follow-up. Le misure di esito sono il cambiamento a 4 mesi di follow-up (che corrisponde a 2 mesi post-intervento nel gruppo sperimentale) di: distanza percorsa, Berg Balance Scale, Short Physical Performance Battery, e Motricity Index. Le variabili misurate a 4 e a 12 mesi di follow-up sono: Barthel Index, Geriatric Depression Scale, SF-12 e Caregiver Strain Index. La distanza percorsa, la performance fisica, l’equilibrio e il punteggio della componente fisica della qualità di vita sono migliorate a 4 mesi nel gruppo AFA+ET e rimasti stabili nel gruppo di controllo. A 12 mesi di follow-up, il gruppo AFA+ET ottiene un cambiamento maggiore, rispetto al gruppo di controllo, nell’abilità di svolgimento delle attività giornaliere e nella qualità di vita. Infine il gruppo AFA+ET riporta, nell’ultimo anno, un minor numero di fratture e minor ricorso a visite riabilitative rispetto al gruppo di controllo. I risultati confermano che l’AFA+ET è efficace nel migliorare le condizioni cliniche di pazienti con ictus e che gli effetti, soprattutto sulla riabilitazione fisica, sono mantenuti anche a lungo termine.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.
Resumo:
In recent years and thanks to innovative technological advances in supplemental lighting sources and photo-selective filters, light quality manipulation (i.e. spectral composition of sunlight) have demonstrated positive effects on plant performance in ornamentals and vegetable crops. However, this aspect has been much less studied in fruit trees due to the difficulty of conditioning the light environment of orchards. The aim of the present PhD research was to study the use of different colored nets with selective light transmission in the blue (400 – 500 nm), red (600 – 700 nm) and near infrared (700 – 1100 nm) wavelengths as a tool to the light quality management and its morphological and physiological effects in field-grown apple trees. Chapter I provides a review the current status on physiological and technological advances on light quality management in fruit trees. Chapter II shows the main effect of colored nets on morpho-anatomical (stomata density, mesophyll structure and leaf mass area index) characteristics in apple leaves. Chapter III provides an analysis about the effect of micro-environmental conditions under colored nets on leaf stomatal conductance and leaf photosynthetic capacity. Chapter IV describes a study approach to evaluate the impact of colored nets on fruit growth potential in apples. Summing up results obtained in the present PhD dissertation clearly demonstrate that light quality management through photo-selective colored nets presents an interesting potential for the manipulation of plant morphological and physiological traits in apple trees. Cover orchards with colored nets might be and alternative technology to address many of the most important challenges of modern fruit growing, such as: the need for the efficient use of natural resources (water, soil and nutrients) the reduction of environmental impacts and the mitigation of possible negative effects of global climate change.
Resumo:
The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).
Resumo:
Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.