4 resultados para phase error detector

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Time-Of-Flight (TOF) detector of ALICE is designed to identify charged particles produced in Pb--Pb collisions at the LHC to address the physics of strongly-interacting matter and the Quark-Gluon Plasma (QGP). The detector is based on the Multigap Resistive Plate Chamber (MRPC) technology which guarantees the excellent performance required for a large time-of-flight array. The construction and installation of the apparatus in the experimental site have been completed and the detector is presently fully operative. All the steps which led to the construction of the TOF detector were strictly followed by a set of quality assurance procedures to enable high and uniform performance and eventually the detector has been commissioned with cosmic rays. This work aims at giving a detailed overview of the ALICE TOF detector, also focusing on the tests performed during the construction phase. The first data-taking experience and the first results obtained with cosmic rays during the commissioning phase are presented as well and allow to confirm the readiness state of the TOF detector for LHC collisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Deep Underground Neutrino Experiment (DUNE) is a long-baseline accelerator experiment designed to make a significant contribution to the study of neutrino oscillations with unprecedented sensitivity. The main goal of DUNE is the determination of the neutrino mass ordering and the leptonic CP violation phase, key parameters of the three-neutrino flavor mixing that have yet to be determined. An important component of the DUNE Near Detector complex is the System for on-Axis Neutrino Detection (SAND) apparatus, which will include GRAIN (GRanular Argon for Interactions of Neutrinos), a novel liquid Argon detector aimed at imaging neutrino interactions using only scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is investigated. This dissertation aims to demonstrate the feasibility of reconstructing particle tracks and the topology of CCQE (Charged Current Quasi Elastic) neutrino events in GRAIN with such a technique. To this end, the development and implementation of a reconstruction algorithm based on Maximum Likelihood Expectation Maximization was carried out to directly obtain a three-dimensional distribution proportional to the energy deposited by charged particles crossing the LAr volume. This study includes the evaluation of the design of several camera configurations and the simulation of a multi-camera optical system in GRAIN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, the LHC experiments will continue to be upgraded as the LHC luminosity will increase from the design 1034 to 7.5 × 1034, with the HL-LHC project, to reach 3000 × f b−1 of accumulated statistics. After the end of a period of data collection, CERN will face a long shutdown to improve overall performance by upgrading the experiments and implementing more advanced technologies and infrastructures. In particular, ATLAS will upgrade parts of the detector, the trigger, and the data acquisition system. It will also implement new strategies and algorithms for processing and transferring the data to the final storage. This PhD thesis presents a study of a new pattern recognition algorithm to be used in the trigger system, which is a software designed to provide the information necessary to select physical events from background data. The idea is to use the well-known Hough Transform mathematical formula as an algorithm for detecting particle trajectories. The effectiveness of the algorithm has already been validated in the past, independently of particle physics applications, to detect generic shapes in images. Here, a software emulation tool is proposed for the hardware implementation of the Hough Transform, to reconstruct the tracks in the ATLAS Trigger and Data Acquisition system. Until now, it has never been implemented on electronics in particle physics experiments, and as a hardware implementation it would provide overall latency benefits. A comparison between the simulated data and the physical system was performed on a Xilinx UltraScale+ FPGA device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUNE is a next-generation long-baseline neutrino oscillation experiment. It aims to measure the still unknown $ \delta_{CP} $ violation phase and the sign of $ \Delta m_{13}^2 $, which defines the neutrino mass ordering. DUNE will exploit a Far Detector composed of four multi-kiloton LArTPCs, and a Near Detector (ND) complex located close to the neutrino source at Fermilab. The SAND detector at the ND complex is designed to perform on-axis beam monitoring, constrain uncertainties in the oscillation analysis and perform precision neutrino physics measurements. SAND includes a 0.6 T super-conductive magnet, an electromagnetic calorimeter, a 1-ton liquid Argon detector - GRAIN - and a modular, low-density straw tube target tracker system. GRAIN is an innovative LAr detector where neutrino interactions can be reconstructed using only the LAr scintillation light imaged by an optical system based on Coded Aperture masks and lenses - a novel approach never used before in particle physics applications. In this thesis, a first evaluation of GRAIN track reconstruction and calorimetric capabilities was obtained with an optical system based on Coded Aperture cameras. A simulation of $\nu_\mu + Ar$ interactions with the energy spectrum expected at the future Fermilab Long Baseline Neutrino Facility (LBNF) was performed. The performance of SAND was evaluated, combining the information provided by all its sub-detectors, on the selection of $ \nu_\mu + Ar \to \mu^- + p + X $ sample and on the neutrino energy reconstruction.