5 resultados para phase change
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. To resolve this issue the industry is improving existing technologies such as Flash and exploring new ones. Among those new technologies is the Phase Change Memory (PCM), which overcomes some of the shortcomings of the Flash such as durability and scalability. This alternative non-volatile memory technology, which uses resistance contrast in phase-change materials, offers more density relative to DRAM, and can help to increase main memory capacity of future systems while remaining within the cost and power constraints. Chalcogenide materials can suitably be exploited for manufacturing phase-change memory devices. Charge transport in amorphous chalcogenide-GST used for memory devices is modeled using two contributions: hopping of trapped electrons and motion of band electrons in extended states. Crystalline GST exhibits an almost Ohmic I(V) curve. In contrast amorphous GST shows a high resistance at low biases while, above a threshold voltage, a transition takes place from a highly resistive to a conductive state, characterized by a negative differential-resistance behavior. A clear and complete understanding of the threshold behavior of the amorphous phase is fundamental for exploiting such materials in the fabrication of innovative nonvolatile memories. The type of feedback that produces the snapback phenomenon is described as a filamentation in energy that is controlled by electron–electron interactions between trapped electrons and band electrons. The model thus derived is implemented within a state-of-the-art simulator. An analytical version of the model is also derived and is useful for discussing the snapback behavior and the scaling properties of the device.
Resumo:
Chalcogenides are chemical compounds with at least one of the following three chemical elements: Sulfur (S), Selenium (Sn), and Tellurium (Te). As opposed to other materials, chalcogenide atomic arrangement can quickly and reversibly inter-change between crystalline, amorphous and liquid phases. Therefore they are also called phase change materials. As a results, chalcogenide thermal, optical, structural, electronic, electrical properties change pronouncedly and significantly with the phase they are in, leading to a host of different applications in different areas. The noticeable optical reflectivity difference between crystalline and amorphous phases has allowed optical storage devices to be made. Their very high thermal conductivity and heat fusion provided remarkable benefits in the frame of thermal energy storage for heating and cooling in residential and commercial buildings. The outstanding resistivity difference between crystalline and amorphous phases led to a significant improvement of solid state storage devices from the power consumption to the re-writability to say nothing of the shrinkability. This work focuses on a better understanding from a simulative stand point of the electronic, vibrational and optical properties for the crystalline phases (hexagonal and faced-centered cubic). The electronic properties are calculated implementing the density functional theory combined with pseudo-potentials, plane waves and the local density approximation. The phonon properties are computed using the density functional perturbation theory. The phonon dispersion and spectrum are calculated using the density functional perturbation theory. As it relates to the optical constants, the real part dielectric function is calculated through the Drude-Lorentz expression. The imaginary part results from the real part through the Kramers-Kronig transformation. The refractive index, the extinctive and absorption coefficients are analytically calculated from the dielectric function. The transmission and reflection coefficients are calculated using the Fresnel equations. All calculated optical constants compare well the experimental ones.
Resumo:
Several CFCC (Continuous Fiber Composite Ceramics) production processes were tested, concluding that PIP (Polymer Impregnation, or Infiltration, Pyrolysis) and CBC (Chemically Bonded Ceramics) based procedures have interesting potential applications in the construction and transportation fields, thanks to low costs to get potentially useful thermomechanical performances. Among the different processes considered during the Doctorate (from the synthesis of new preceramic polymers, to the PIP production of SiC / SiC composites) the more promising results came from the PIP process with poly-siloxanes on basalt fabrics preforms. Low processing time and costs, together with fairly good thermomechanical properties were demonstrated, even after only one or two PIP steps in nitrogen flow. In alternative, pyrolysis in vacuum was also tested, a procedure still not discussed in literature, but which could originate an interesting reduction of production costs, with only a moderate detrimental effect on the mechanical properties. The resulting CFCC is a basalt / SiCO composite that can be applied for continuous operation up to 600°C, also in oxidant environment, as TG and XRD demonstrated. The failure upon loading is generally pseudo-plastic, being interlaminar delamination the most probable rupture mechanism. . The strength depends on several different factors (microstructure, polymer curing and subsequent ceramic phase evolution, fiber pull-out, fiber strength, fiber percentage) and can only be optimized empirically. In order to be open minded in selecting the best technology, also CBC (Chemically Bonded Ceramics) matrixes were considered during this Doctorate, making some preliminary investigations on fire-resistant phosphate cements. Our results on a commercial product evidenced some interesting thermomechanical capabilities, even after thermal treatments. However the experiments showed also phase change and possible cracking and deformations even on slow drying (at 130°C) and easy rehydration upon exposure to environmental humidity.
Resumo:
This volume is a collection of the work done in a three years-lasting PhD, focused in the analysis of Central and Southern Adriatic marine sediments, deriving from the collection of a borehole and many cores, achieved thanks to the good seismic-stratigraphic knowledge of the study area. The work was made out within European projects EC-EURODELTA (coordinated by Fabio Trincardi, ISMAR-CNR), EC-EUROSTRATAFORM (coordinated by Phil P. E. Weaver, NOC, UK), and PROMESS1 (coordinated by Serge Bernè, IFREMER, France). The analysed sedimentary successions presented highly expanded stratigraphic intervals, particularly for the last 400 kyr, 60 kyr and 6 kyr BP. These three different time-intervals resulted in a tri-partition of the PhD thesis. The study consisted of the analysis of planktic and benthic foraminifers’ assemblages (more than 560 samples analysed), as well as in preparing the material for oxygen and carbon stable isotope analyses, and interpreting and discussing the obtained dataset. The chronologic framework of the last 400 kyr was achieved for borehole PRAD1-2 (within the work-package WP6 of PROMESS1 project), collected in 186.5 m water depth. The proposed chronology derives from a multi-disciplinary approach, consisting of the integration of numerous and independent proxies, some of which analysed by other specialists within the project. The final framework based on: micropaleontology (calcareous nannofossils and foraminifers’ bioevents), climatic cyclicity (foraminifers’ assemblages), geochemistry (oxygen stable isotope, made out on planktic and benthic records), paleomagnetism, radiometric ages (14C AMS), teprhochronology, identification of sapropel-equivalent levels (Se). It’s worth to note the good consistency between the oxygen stable isotope curve obtained for borehole PRAD1-2 and other deeper Mediterranean records. The studied proxies allowed the recognition of all the isotopic intervals from MIS10 to MIS1 in PRAD1-2 record, and the base of the borehole has been ascribed to the early MIS11. Glacial and interglacial intervals identified in the Central Adriatic record have been analysed in detail for the paleo-environmental reconstruction, as well. For instance, glacial stages MIS6, MIS8 and MIS10 present peculiar foraminifers’ assemblages, composed by benthic species typical of polar regions and no longer living in the Central Adriatic nowadays. Moreover, a deepening trend in the paleo-bathymetry during glacial intervals was observed, from MIS10 (inner-shelf environment) to MIS4 (mid-shelf environment).Ten sapropel-equivalent levels have been recognised in PRAD1-2 Central Adriatic record. They showed different planktic foraminifers’ assemblages, which allowed the first distinction of events occurred during warm-climate (Se5, Se7), cold-climate (Se4, Se6 and Se8) and temperate-intermediate-climate (Se1, Se3, Se9, Se’, Se10) conditions, consistently with literature. Cold-climate sapropel equivalents are characterised by the absence of an oligotrophic phase, whereas warm-temeprate-climate sapropel equivalents present both the oligotrophic and the eutrophic phases (except for Se1). Sea floor conditions vary, according to benthic foraminifers’ assemblages, from relatively well oxygenated (Se1, Se3), to dysoxic (Se9, Se’, Se10), to highly dysoxic (Se4, Se6, Se8) to events during which benthic foraminifers are absent (Se5, Se7). These two latter levels are also characterised by the lamination of the sediment, feature never observed in literature in such shallow records. The enhanced stratification of the water column during the events Se8, Se7, Se6, Se5, Se4, and the concurring strong dilution of shallow water, pointed out by the isotope record, lead to the hypothesis of a period of intense precipitation in the Central Adriatic region, possibly due to a northward shift of the African Monsoon. Finally, the expression of Central Adriatic PRAD1-2 Se5 equivalent was compared with the same event, as registered in other Eastern Mediterranean areas. The sequence of substantially the same planktic foraminifers’ bioevents has been consistently recognised, indicating a similar evolution of the water column all over the Eastern Mediterranean; yet, the synchronism of these events cannot be demonstrated. A high resolution analysis of late Holocene (last 6000 years BP) climate change was carried out for the Adriatic area, through the recognition of planktic and benthic foraminifers’ bioevents. In particular, peaks of planktic Globigerinoides sacculifer (four during the last 5500 years BP in the most expanded core) have been interpreted, based on the ecological requirements of this species, as warm-climate, arid intervals, correspondent to periods of relative climatic optimum, such as, for instance, the Medieval Warm Period, the Roman Age, the Late Bronze Age and the Copper Age. Consequently, the minima in the abundance of this biomarker could correspond to relatively cooler and more rainy periods. These conclusions are in good agreement with the isotopic and the pollen data. The Last Occurrence (LO) of G. sacculifer has been dated in this work at an average age of 550 years BP, and it is the best bioevent approximating the base of the Little Ice Age in the Adriatic. Recent literature reports the same bioevent in the Levantine Basin, showing a rather consistent age. Therefore, the LO of G. sacculifer has the potential to be extended to all the Eastern Mediterranean. Within the Little Ice Age, benthic foraminifer V. complanata shows two distinct peaks in the shallower Adriatic cores analysed, collected hundred kilometres apart, inside the mud belt environment. Based on the ecological requirements of this species, these two peaks have been interpreted as the more intense (cold and rainy) oscillations inside the LIA. The chronologic framework of the analysed cores is robust, being based on several range-finding 14C AMS ages, on estimates of the secular variation of the magnetic field, on geochemical estimates of the activity depth of 210Pb short-lived radionuclide (for the core-top ages), and is in good agreement with tephrochronologic, pollen and foraminiferal data. The intra-holocenic climate oscillations find out in the Adriatic have been compared with those pointed out in literature from other records of the Northern Hemisphere, and the chronologic constraint seems quite good. Finally, the sedimentary successions analysed allowed the review and the update of the foraminifers’ ecobiostratigraphy available from literature for the Adriatic region, thanks to the achievement of 16 ecobiozones for the last 60 kyr BP. Some bioevents are restricted to the Central Adriatic (for instance the LO of benthic Hyalinea balthica , approximating the MIS3/MIS2 boundary), others occur all over the Adriatic basin (for instance the LO of planktic Globorotalia inflata during MIS3, individuating Dansgaard-Oeschger cycle 8 (Denekamp)).
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.