13 resultados para peripheral blood mononuclear cells (PBMC)
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
NGAL (Neutrophil Gelatinase-associated Lipocalin ) is a protein of lipocalin superfamily. Recent literature focused on its biomarkers function in several pathological condition (acute and chronic kidney damage, autoimmune disease, malignancy). NGAL biological role is not well elucidated. Several are the demonstration of its bacteriostatic role. Recent papers have indeed highlight NGAL role in NFkB modulation. The aim of this study is to understand whether NGAL may exert a role in the activation (modulation) of T cell response through the regulation of HLA-G complex, a mediator of tolerance. From 8 healthy donors we obtained peripheral blood mononuclear cells (PBMCs) and we isolated by centrifugation on a Ficoll gradient. Cells were then treated with four concentrations of NGAL (40-320 ng/ml) with or without iron. We performed flow cytometry analysis and ELISA test. NGAL increased the HLA-G expression on CD4+ T cells, with an increasing corresponding to the dose. Iron effect is not of unique interpretation. NGAL adiction affects regulatory T cells increasing in vitro expansion of CD4+ CD25+ FoxP3+ cells. Neutralizing antibody against NGAL decreased HLA-G expression and reduced significantly CD4+ CD25+ FoxP3+ cells percentage. In conclusion, we provided in vitro evidence of NGAL involvement in cellular immunity. The potential role of NGAL as an immunomodulatory molecule has been evaluated: it has been shown that NGAL plays a pivotal role in the induction of immune tolerance up regulating HLA-G and T regulatory cells expression in healthy donors. As potential future scenario we highlight the in vivo role of NGAL in immunology and immunomodulation, and its possible relationship with immunosuppressive therapy efficacy, tolerance induction in transplant patients, and/or in other immunological disorders.
Resumo:
As proviral human immunodeficiency virus type 1 (HIV-1) DNA can replenish and revive viral infection upon attivation, its analysis, in addition to RNA viral load, could be considered a useful marker during the follow-up of infected individuals, to evaluate reservoir status, especially in HAART-treated patients when RNA viral load is undetectable by current techniques and the antiretroviral efficacy of new, more potent therapeutic regimens. Standardized methods for the measurement of the two most significant forms of proviral DNA, total and non-integrated, are currently lacking, despite the widespread of molecular biology techniques. In this study, total and 2-LTR HIV-1 DNA proviral load, in addition to RNA viral load, CD4 cell count and serological parameters, were determined by quantitative analysis in peripheral blood mononuclear cells (PBMC) in naïve or subsequently HAART-treated patients with acute HIV-1 infection in order to establish the role of these two DNA proviral forms in the course of HIV infection. The study demonstrated that HAART-treated individuals show a significant decrease in both total and 2-LTR circular HIV-1 DNA proviral load compared with naïve patients: these findings confirm that HIV-1 reservoir decay correlates with therapeutic effectiveness. The persistence of small amounts of 2-LTR HIV-1 DNA form, which is considered to be a molecular determinant of infectivity, in PBMC from some patients demonstrates that a small rate of replication is retained even when HAART is substantially effective: HAART could not eradicate completely the infection because HIV is able to replicate at low levels. Plasma-based viral RNA assays may fail to demonstrate the full extent of viral activity. In conclusion, the availability of a new standardized assay to determine DNA proviral load will be important in assessing the true extent of virological suppression suggesting that its quantification may be an important parameter in monitoring HIV infection.
Resumo:
Background. Ageing and inflammation are critical for the occurrence of aortic diseases. Extensive inflammatory infiltrate and excessive ECM proteloysis, mediated by MMPs, are typical features of abdominal aortic aneurysm (AAA). Mesenchymal Stromal Cells (MSCs) have been detected within the vascular wall and represent attractive candidates for regenerative medicine, in virtue of mesodermal lineage differentiation and immunomodulatory activity. Meanwhile, many works have underlined an impaired MSC behaviour under pathological conditions. This study was aimed to define a potential role of vascular MSCs to AAA development. Methods. Aortic tissues were collected from AAA patients and healthy donors. Our analysis was organized on three levels: 1) histology of AAA wall; 2) detection of MSCs and evaluation of MMP-9 expression on AAA tissue; 3) MSC isolation from AAA wall and characterization for mesenchymal/stemness markers, MMP-2, MMP-9, TIMP-1, TIMP-2 and EMMPRIN. AAA-MSCs were tested for immunomodulation, when cultured together with activated peripheral blood mononuclear cells (PBMCs). In addition, a co-colture of both healthy and AAA MSCs was assessed and afterwards MMP-2/9 mRNA levels were analyzed. Results. AAA-MSCs showed basic mesenchymal properties: fibroblastic shape, MSC antigens, stemness genes. MMP-9 mRNA, protein and enzymatic activity were significantly increased in AAA-MSCs. Moreover, AAA-MSCs displayed a weak immunosuppressive activity, as shown by PBMC ongoing along cell cycle. MMP-9 was shown to be modulated at the transcriptional level through the direct contact as well as the paracrine action of healthy MSCs. Discussion. Vascular injury did not affect the MSC basic phenotype, but altered their function, a increased MMP-9 expression and ineffective immunmodulation. These data suggest that vascular MSCs can contribute to aortic disease. In this view, the study of key processes to restore MSC immunomodulation could be relevant to find a pharmacological approach for monitoring the aneurysm progression.
Resumo:
Immunosenescence is characterized by a complex remodelling of the immune system, mainly driven by lifelong antigenic burden. Cells of the immune system are constantly exposed to a variety of stressors capable of inducing apoptosis, including antigens and reactive oxygen species continuously produced during immune response and metabolic pathways. The overall homeostasis of the immune system is based on the balance between antigenic load, oxidative stress, and apoptotic processes on one side, and the regenerative potential and renewal of the immune system on the other. Zinc is an essential trace element playing a central role on the immune function, being involved in many cellular processes, such as cell death and proliferation, as cofactor of enzymes, nuclear factors and hormones. In this context, the age associated changes in the immune system may be in part due to zinc deficiency, often observed in aged subjects and able to induce impairment of several immune functions. Thus, the aim of this work was to investigate the role of zinc in two essential events for immunity during aging, i.e. apoptosis and cell proliferation. Spontaneous and oxidative stress-induced apoptosis were evaluated by flow cytometry in presence of a physiological concentration of zinc in vitro on peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects of different age: a group of young subjects, a group of old subjects and a group of nonagenarians. In addition, cell cycle phases were analyzed by flow cytometry in PBMCs, obtained from the subjects of the same groups in presence of different concentration of zinc. We also analyzed the influence of zinc in these processes in relation to p53 codon 72 polymorphism, known to affect apoptosis and cell cycle in age-dependent manner. Zinc significantly reduces spontaneous apoptosis in all age-groups; while it significantly increases oxidative stress-induced late apoptosis/necrosis in old and nonagenarians subjects. Some factors involved in the apoptotic pathway were studied and a zinc effect on mitochondrial membrane depolarization, cytochrome C release, caspase-3 activation, PARP cleavage and Bcl-2 expression was found. In conclusion, zinc inhibits spontaneous apoptosis in PBMCs contrasting the harmful effects due to the cellular culture conditions. On the other hand, zinc is able to increase toxicity and induce cell death in PBMCs from aged subjects when cells are exposed to stressing agents that compromise antioxidant cellular systems. Concerning the relationship between the susceptibility to apoptosis and p53 codon 72 genotype, zinc seems to affect apoptosis only in PBMCs from Pro- people suggesting a role of this ion in strengthening the mechanism responsible of the higher propensity of Pro- towards apoptosis. Regarding cell cycle, high doses of zinc could have a role in the progression of cells from G1 to S phase and from S to G2/M phase. These effect seems depend on the age of the donor but seems to be unrelated to p53 codon 72 genotype. In order to investigate the effect of an in vivo zinc supplementation on apoptosis and cell cycle, PBMCs from a group of aged subjects were studied before and after six weeks of oral zinc supplementation. Zinc supplementation reduces spontaneous apoptosis and it strongly reduces oxidative stress-induced apoptosis. On the contrary, no effect of zinc was observed on cell cycle. Therefore, it’s clear that in vitro and in vivo zinc supplementation have different effects on apoptosis and cell cycle in PBMCs from aged subjects. Further experiments and clinical trials are necessary to clarify the real effect of an in vivo zinc supplementation because this preliminary data could encourage the of this element in all that disease with oxidative stress pathogenesis. Moreover, the expression of metallothioneins (MTs), proteins well known for their zinc-binding ability and involved in many cellular processes, i.e. apoptosis, metal ions detoxification, oxidative stress, differentiation, was evaluated in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from young and old healthy subjects in presence of different concentration of zinc in vitro. Literature data reported that during ageing the levels of these proteins increase and concomitantly they lose the ability to release zinc. This fact induce a down-regulation of many biological functions related to zinc, such as metabolism, gene expression and signal transduction. Therefore, these proteins may turn from protective in young-adult age to harmful agents for the immune function in ageing following the concept that several genes/proteins that increase fitness early in life may have negative effects later in life: named “Antagonistic Pleyotropy Theory of Ageing”. Data obtained in this work indicate an higher and faster expression of MTs with lower doses of zinc in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from old subjects supporting the antagonistic pleiotropic role of these proteins.
Resumo:
Hepatitis B x protein (HBx) is a non structural, multifunctional protein of hepatitis B virus (HBV) that modulates a variety of host processes.Due to its transcriptional activity,able to alter the expression of growth-control genes,it has been implicated in hepatocarcinogenesis.Increased expression of HBx has been reported on the liver tissue samples of hepatocellular carcinoma (HCC),and a specific anti-HBx immune response can be detected in the peripheral blood of patients with chronic HBV.However,its role and entity has not been yet clarified.Thus,we performed a cross-sectional analysis of anti-HBx specific T cell response in HBV-infected patients in different stage of disease.A total of 70 HBV-infected subjects were evaluated:15 affected by chronic hepatitis (CH-median age 45 yrs),14 by cirrhosis (median age 55 yrs),11 with dysplastic nodules (median age 64 yrs),15 with HCC (median age 60 yrs),15 with IC(median age 53 yrs).All patients were infected by virus genotype D with different levels of HBV viremia and most of them (91%) were HBeAb positive.The HBx-specific T cell response was evaluated by anti-Interferon (IFN)-gamma Elispot assay after in vitro stimulation of peripheral blood mononuclear cells,using 20 overlapping synthetic peptides covering all HBx protein sequence.HBx-specific IFN-gamma-secreting T cells were found in 6 out of 15 patients with chronic hepatitis (40%), 3 out of 14 cirrhosis (21%), in 5 out of 11 cirrhosis with macronodules (54%), and in 10 out of 15 HCC patients (67%). The number of responding patients resulted significantly higher in HCC than IC (p=0.02) and cirrhosis (p=0.02). Central specific region of the protein x was preferentially recognize,between 86-88 peptides. HBx response does not correlate with clinical feature disease(AFP,MELD).The HBx specific T-cell response seems to increase accordingly to progression of the disease, being increased in subjects with dysplastic or neoplastic lesions and can represent an additional tool to monitor the patients at high risk to develop HCC
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive and rare disease with so far unclear pathogenesis, limited treatment options and poor prognosis. Unbalance of proliferation and migration in pulmonary arterial smooth muscle cells (PASMCs) is an important hallmark of PAH. In this research Sodium butyrate (BU) has been evaluated in vitro and in vivo models of PAH. This histone deacetylase inhibitor (HDACi) counteracted platelet-derived growth factor (PDGF)-induced ki67 expression in PASMCs, and arrested cell cycle mainly at G0/G1 phases. Furthermore, BU reduced the transcription of PDGFRbeta, and that of Ednra and Ednrb, two major receptors in PAH progression. Wound healing and pulmonary artery ring assays indicated that BU inhibited PDGF-induced PASMC migration. BU strongly inhibited PDGF-induced Akt phosphorylation, an effect reversed by the phosphatase inhibitor calyculinA. In vivo, BU showed efficacy in monocrotaline-induced PAH in rats. Indeed, the HDACi reduced both thickness of distal pulmonary arteries and right ventricular hypertrophy. Besides these studies, Serial Analysis of Gene Expression (SAGE) has be used to obtain complete transcriptional profiles of peripheral blood mononuclear cells (PBMCs) isolated from PAH and Healthy subjects. SAGE allows quantitative analysis of thousands transcripts, relying on the principle that a short oligonucleotide (tag) can uniquely identify mRNA transcripts. Tag frequency reflects transcript abundance. We enrolled patients naïve for a specific PAH therapy (4 IPAH non-responder, 3 IPAH responder, 6 HeritablePAH), and 8 healthy subjects. Comparative analysis revealed that significant differential expression was only restricted to a hundred of down- or up-regulated genes. Interestingly, these genes can be clustered into functional networks, sharing a number of crucial features in cellular homeostasis and signaling. SAGE can provide affordable analysis of genes amenable for molecular dissection of PAH using PBMCs as a sentinel, surrogate tissue. Altogether, these findings may disclose novel perspectives in the use of HDACi in PAH and potential biomarkers.
Resumo:
The final goal of the bioassay developed during the first two years of my Ph.D. was its application for the screening of antioxidant activity of nutraceuticals and for monitoring the intracellular H2O2 production in peripheral blood mononuclear cells (PBMCs) from hypercholesterolemic subjects before and after two months treatment with Evolocumab, a new generation LDL-cholesterol lowering drug. Moreover, a recombinant bioluminescent protein was developed during the last year using the Baculovirus expression system in insect cells. In particular, the protein combines the extracellular domain (ECD) of the Notch high affinity mutated form of one of the selective Notch ligands defined as Jagged 1 (Jag1) with a red emitting firefly luciferase since a pivotal role of “aberrant” Notch signaling activation in colorectal cancer (CRC) was reported. The probe was validated and characterized in terms of analytical performance and through imaging experiments, in order to understand if Jagged1-FLuc binding correlates with a Notch signaling overexpression and activation in CRC progression.
Resumo:
Numerose evidenze sperimentali hanno dimostrato il contributo delle cellule staminali (SC) di derivazione midollare nei processi di rigenerazione epatica dopo danno tissutale. E’ cresciuto pertanto l’interesse sul loro potenziale impiego in pazienti con cirrosi. Questo studio si proponeva di valutare la fattibilità e la sicurezza della reinfusione intraepatica di cellule staminali midollari autologhe CD133+ in 12 pazienti con insufficienza epatica terminale. Previa mobilizzazione nel sangue periferico mediante somministrazione di granulocyte-colony stimulating factor (G-CSF) alla dose di 7,5 mcg/Kg/b.i.d. e raccolta per leucoaferesi (solo se la concentrazione di CD133 + SC era > 8/μL), le cellule CD133+ altamente purificate sono state reinfuse in arteria epatica a partire da 5x104/Kg fino a 1x106/kg. Nei tre giorni successivi è stato somministrato G-CSF per favorire l’espansione e l’attecchimento delle cellule. Durante la fase della mobilizzazione e quella della reinfusione sono stati eseguiti saggi biologici quali: caratterizzazione fenotipica delle SC circolanti, saggi clonogenici, valutazione della concentrazione sierica del Hepatocyte Growth Factor (HGF), Stromal-Derived Factor-1 (SDF-1) ed il Vascular-Endotelial Growth Factor (VEGF) e caratterizzazione fenotipica delle CD133+SC purificate. Fino ad oggi sono stati reinfusi 12 pazienti. Questi dati preliminari suggeriscono che è possibile mobilizzare e reinfondere un numero considerevole di SC autologhe CD133+ altamente purificate in pazienti con ESLD . Gli studi biologici mostrano che: il numero di progenitori ematopoietici ed endoteliali circolanti è aumentato dopo il trattamento con G–CSF; le SCs CD133+ altamente purificato esprimono marcatori emopoietici ed endoteliali; la concentrazione sierica di HGF, SDF-1, VEGF e la capacità clonogenica di progenitori emopoietici sono aumentati durante la mobilitazione e nelle fasi di reinfusione; il potenziale clonogenico dei progenitori endoteliali mostra espressione variabile.
Resumo:
Circulating Fibrocytes (CFs) are bone marrow-derived mesenchymal progenitor cells that express a similar pattern of surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. CFs precursor display an ability to differentiate into fibroblasts and Myofibroblasts, as well as adipocytes. Fibrocytes have been shown to contribute to tissue fibrosis in the end-stage renal disease (ESRD), as well as in other fibrotic diseases, leading to fibrogenic process in other organs including lung, cardiac, gut and liver. This evidence has been confirmed by several experimental proofs in mice models of kidney injury. In the present study, we developed a protocol for the study of CFs, by using peripheral blood monocytes cells (PBMCs) samples collected from healthy human volunteers. Thanks to a flow cytometry method, in vitro culture assays and the gene expression assays, we are able to study and characterize this CFs population. Moreover, results confirmed that these approaches are reliable and reproducible for the investigation of the circulating fibrocytes population in whole blood samples. Our final aim is to confirm the presence of a correlation between the renal fibrosis progression, and the different circulating fibrocyte levels in Chronic Kidney Disease (CKD) patients. Thanks to a protocol study presented and accepted by the Ethic Committee we are continuing the study of CFs induction in a cohort of sixty patients affected by CKD, divided in three distinct groups for different glomerular filtration rate (GFR) levels, plus a control group of thirty healthy subjects. Ongoing experiments will determine whether circulating fibrocytes represent novel biomarkers for the study of CKD progression, in the early and late phases of this disease.
Resumo:
In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.
Resumo:
Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold
Resumo:
With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.
Resumo:
Despite the paramount advances in cancer research, breast cancer (BC) still ranks one of the leading causes of cancer-related death worldwide. Thanks to the screening campaign started in developed countries, BC is often diagnosed at early stages (non-metastatic BC, nmBC), but disease relapse occurrence even after decades and at distant sites is not an uncommon phenomenon. Conversely, metastatic BC (mBC) is considered an incurable disease. The major perpetrators of tumor spread to secondary organs are circulating tumor cells (CTCs), a rare population of cells detectable in the peripheral blood of oncologic patients. In this study, CTCs from patients diagnosed with luminal nmBC and mBC (hormone receptor positive, Human Epidermal Growth Factor Receptor 2 (HER2) negative) were characterized at both phenotypic and molecular levels. To better understand the molecular mechanisms underlying their biology and their metastatic potential, next-generation sequencing (NGS) analyses were performed at single-cell resolution to assess copy number aberrations (CNAs), single nucleotide variants (SNVs) and gene expression profiling. The findings of this study arise hints in CTC detection, and pave the way to new application in CTC research.