22 resultados para penalty-based aggregation functions
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
We study some perturbative and nonperturbative effects in the framework of the Standard Model of particle physics. In particular we consider the time dependence of the Higgs vacuum expectation value given by the dynamics of the StandardModel and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In theHartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the backreaction of the produced particles. Then, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vacuum expectation value (vev). As perturbative effects, we consider the leading logarithmic resummation in small Bjorken x QCD, concentrating ourselves on the Nc dependence of the Green functions associated to reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the large Nc limit (planar limit) case where the problem becomes integrable. In this contest we consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. In particular we study the depencence of the spectrum of thesemodelswith respect to the number of colors andmake comparisons with the planar limit case. In the final part we move on the study of theories beyond the Standard Model, considering models built on AdS5 S5/Γ orbifold compactifications of the type IIB superstring, where Γ is the abelian group Zn. We present an appealing three family N = 0 SUSY model with n = 7 for the order of the orbifolding group. This result in a modified Pati–Salam Model which reduced to the StandardModel after symmetry breaking and has interesting phenomenological consequences for LHC.
Resumo:
Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.
Resumo:
Gnocchi is a typical Italian potato-based fresh pasta that can be either homemade or industrially manufactured. The homemade traditional product is consumed fresh on the day it is produced, whereas the industrially manufactured one is vacuum-packed in polyethylene and usually stored at refrigerated conditions. At industrial level, most kinds of gnocchi are usually produced by using some potato derivatives (i.e. flakes, dehydrated products or flour) to which soft wheat flour, salt, some emulsifiers and aromas are added. Recently, a novel type of gnocchi emerged on the Italian pasta market, since it would be as much similar as possible to the traditional homemade one. It is industrially produced from fresh potatoes as main ingredient and soft wheat flour, pasteurized liquid eggs and salt, moreover this product undergoes steam cooking and mashing industrial treatments. Neither preservatives nor emulsifiers are included in the recipe. The main aim of this work was to get inside the industrial manufacture of gnocchi, in order to improve the quality characteristics of the final product, by the study of the main steps of the production, starting from the raw and steam cooked tubers, through the semi-finished materials, such as the potato puree and the formulated dough. For this purpose the investigation of the enzymatic activity of the raw and steam cooked potatoes, the main characteristics of the puree (colour, texture and starch), the interaction among ingredients of differently formulated doughs and the basic quality aspects of the final product have been performed. Results obtained in this work indicated that steam cooking influenced the analysed enzymes (Pectin methylesterase and α- and β-amylases) in different tissues of the tuber. PME resulted still active in the cortex, it therefore may affect the texture of cooked potatoes to be used as main ingredient in the production of gnocchi. Starch degrading enzymes (α- and β-amylases) were inactivated both in the cortex and in the pith of the tuber. The study performed on the potato puree showed that, between the two analysed samples, the product which employed dual lower pressure treatments seemed to be the most suitable to the production of gnocchi, in terms of its better physicochemical and textural properties. It did not evidence aggregation phenomena responsible of hard lumps, which may occur in this kind of semi-finished product. The textural properties of gnocchi doughs were not influenced by the different formulation as expected. Among the ingredients involved in the preparation of the different samples, soft wheat flour seemed to be the most crucial in affecting the quality features of gnocchi doughs. As a consequence of the interactive effect of the ingredients on the physicochemical and textural characteristics of the different doughs, a uniform and well-defined split-up among samples was not obtained. In the comparison of different kinds of gnocchi, the optimal physicochemical and textural properties were detected in the sample made with fresh tubers. This was probably caused not only by the use of fresh steam cooked potatoes, but also by the pasteurized liquid eggs and by the absence of any kind of emulsifier, additive or preserving substance.
Resumo:
The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.
Resumo:
We propose an extension of the approach provided by Kluppelberg and Kuhn (2009) for inference on second-order structure moments. As in Kluppelberg and Kuhn (2009) we adopt a copula-based approach instead of assuming normal distribution for the variables, thus relaxing the equality in distribution assumption. A new copula-based estimator for structure moments is investigated. The methodology provided by Kluppelberg and Kuhn (2009) is also extended considering the copulas associated with the family of Eyraud-Farlie-Gumbel-Morgenstern distribution functions (Kotz, Balakrishnan, and Johnson, 2000, Equation 44.73). Finally, a comprehensive simulation study and an application to real financial data are performed in order to compare the different approaches.
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.
Resumo:
Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.
Resumo:
With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
Nowadays, in developed countries, the excessive food intake, in conjunction with a decreased physical activity, has led to an increase in lifestyle-related diseases, such as obesity, cardiovascular diseases, type -2 diabetes, a range of cancer types and arthritis. The socio-economic importance of such lifestyle-related diseases has encouraged countries to increase their efforts in research, and many projects have been initiated recently in research that focuses on the relationship between food and health. Thanks to these efforts and to the growing availability of technologies, the food companies are beginning to develop healthier food. The necessity of rapid and affordable methods, helping the food industries in the ingredient selection has stimulated the development of in vitro systems that simulate the physiological functions to which the food components are submitted when administrated in vivo. One of the most promising tool now available appears the in vitro digestion, which aims at predicting, in a comparative way among analogue food products, the bioaccessibility of the nutrients of interest.. The adoption of the foodomics approach has been chosen in this work to evaluate the modifications occurring during the in vitro digestion of selected protein-rich food products. The measure of the proteins breakdown was performed via NMR spectroscopy, the only techniques capable of observing, directly in the simulated gastric and duodenal fluids, the soluble oligo- and polypeptides released during the in vitro digestion process. The overall approach pioneered along this PhD work, has been discussed and promoted in a large scientific community, with specialists networked under the INFOGEST COST Action, which recently released a harmonized protocol for the in vitro digestion. NMR spectroscopy, when used in tandem with the in vitro digestion, generates a new concept, which provides an additional attribute to describe the food quality: the comparative digestibility, which measures the improvement of the nutrients bioaccessibility.
Resumo:
Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.
Resumo:
Acute myeloid leukemia (AML) is a haematological malignancies arising from the accumulation of undifferentiated myeloid progenitors with an uncontrolled proliferation. The genomic landscape of AML revealed that the disease is characterized by high level of heterogeneity and is subjected to clonal evolution driven by selective pressure of chemotherapy. In this study, we investigated the therapeutic effects of the inhibition of BRD4 and CDC20 in vitro and ex vivo. We demonstrated that inhibition of BRD4 with GSK1215101A in AML cell lines was effective under hypoxia. It induced the activation of antioxidant response both, at transcriptomic and metabolomic levels, driven by enrichment of NRF2 pathway under normoxic and hypoxic condition. Moreover, the combined treatment with Omaveloxolone, a drug inducing NRF2 activation and NF-κB inhibition, potentiated the effects on apoptosis and colony forming capacity of stem progenitor cells. Lastly, gene expression profiling data revealed that combination treatment induced major changes in genes related to cell cycle, together with enrichment of cell differentiation pathways and negative regulation of WNT, in normoxia and hypoxia. Regarding CDC20, we observed its up-regulation in AML patients. Treatment with two different inhibitors, Apcin and proTAME, was effective in primary AML cells and in AML cell lines, through induction of apoptosis and mitotic arrest. The lack of correlation between proliferation markers and CDC20 levels in AML cell subpopulations supports the idea of alternative CDC20 functions, independent from its essential role during mitosis. CDC20-KD experiments conducted in AML cell lines revealed a mild effect on apoptosis induction, but no significant change in cell cycle progression. In summary, these results allowed the identification of a new strategy combination to improve the effects of BRD4 inhibition on LSC residing in the BM hypoxic niche, and provide some new evidence regarding the potential role of CDC20 as a new target for AML treatment.
Resumo:
Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.