9 resultados para paracrine signaling
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Neuronal networks exhibit diverse types of plasticity, including the activity-dependent regulation of synaptic functions and refinement of synaptic connections. In addition, continuous generation of new neurons in the “adult” brain (adult neurogenesis) represents a powerful form of structural plasticity establishing new connections and possibly implementing pre-existing neuronal circuits (Kempermann et al, 2000; Ming and Song, 2005). Neurotrophins, a family of neuronal growth factors, are crucially involved in the modulation of activity-dependent neuronal plasticity. The first evidence for the physiological importance of this role evolved from the observations that the local administration of neurotrophins has dramatic effects on the activity-dependent refinement of synaptic connections in the visual cortex (McAllister et al, 1999; Berardi et al, 2000; Thoenen, 1995). Moreover, the local availability of critical amounts of neurotrophins appears to be relevant for the ability of hippocampal neurons to undergo long-term potentiation (LTP) of the synaptic transmission (Lu, 2004; Aicardi et al, 2004). To achieve a comprehensive understanding of the modulatory role of neurotrophins in integrated neuronal systems, informations on the mechanisms about local neurotrophins synthesis and secretion as well as ditribution of their cognate receptors are of crucial importance. In the first part of this doctoral thesis I have used electrophysiological approaches and real-time imaging tecniques to investigate additional features about the regulation of neurotrophins secretion, namely the capability of the neurotrophin brain-derived neurotrophic factor (BDNF) to undergo synaptic recycling. In cortical and hippocampal slices as well as in dissociated cell cultures, neuronal activity rapidly enhances the neuronal expression and secretion of BDNF which is subsequently taken up by neurons themselves but also by perineuronal astrocytes, through the selective activation of BDNF receptors. Moreover, internalized BDNF becomes part of the releasable source of the neurotrophin, which is promptly recruited for activity-dependent recycling. Thus, we described for the first time that neurons and astrocytes contain an endocytic compartment competent for BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia. The mechanism of BDNF recycling is reminiscent of that for neurotransmitters and identifies BDNF as a new modulator implicated in neuro- and glio-transmission. In the second part of this doctoral thesis I addressed the role of BDNF signaling in adult hippocampal neurogenesis. I have generated a transgenic mouse model to specifically investigate the influence of BDNF signaling on the generation, differentiation, survival and connectivity of newborn neurons into the adult hippocampal network. I demonstrated that the survival of newborn neurons critically depends on the activation of the BDNF receptor TrkB. The TrkB-dependent decision regarding life or death in these newborn neurons takes place right at the transition point of their morphological and functional maturation Before newborn neurons start to die, they exhibit a drastic reduction in dendritic complexity and spine density compared to wild-type newborn neurons, indicating that this receptor is required for the connectivity of newborn neurons. Both the failure to become integrated and subsequent dying lead to impaired LTP. Finally, mice lacking a functional TrkB in the restricted population of newborn neurons show behavioral deficits, namely increased anxiety-like behavior. These data suggest that the integration and establishment of proper connections by newly generated neurons into the pre-existing network are relevant features for regulating the emotional state of the animal.
Resumo:
The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.
Resumo:
In Drosophila the steroid hormone ecdysone regulates a wide range of developmental and physiological responses, including reproduction, embryogenesis, postembryonic development and metamorphosis. Drosophila provides an excellent system to address some fundamental questions linked to hormone actions. In fact, the apparent relative simplicity of its hormone signaling pathways taken together with well-established genetic and genomic tools developed to this purpose, defines this insect as an ideal model system for studying the molecular mechanisms through which steroid hormones act. During my PhD research program I’ve analyzed the role of ecdysone signaling to gain insight into the molecular mechanisms through which the hormone fulfills its pleiotropic functions in two different developmental stages: the oogenesis and the imaginal wing disc morphogenesis. To this purpose, I performed a reverse genetic analysis to silence the function of two different genes involved in ecdysone signaling pathway, EcR and ecd.
Resumo:
The exact mechanisms of the exercise induced adaptations is not lucid, but recent studies have delineated two means of signaling by which the adaptations occur (1) substrate availability signaling (metabolic stress) (2) hormone-receptor signaling. We have decided to specifically investigate two metabolic signaling enzymes [AMP-activated kinase (AMPK) and Sirtuin 1(SIRT1)] and two hormones [Adiponectin and Adrenergic stimulation].Tis based on four papers with the following conclusions: (1)Increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, mediated by AMPK. (2)The lack of optimal nutritional conditions (energetic substrates) due to a prolonged activation of AMPK can contrast the establishment of hypertrophy, possibly also by means of the negative modulation of ODC activity. (3) Our findings offer a possibile hypothesis as to the fact the the G allele on site 45 could lead to the increasd risk of Type II diabetes through a decrease in lean body mass. (4) Our results suggest that there is an ADIPOQ gene effect in relation to bone parameters. Statistical analysis show that the presence of the T allele in position 45 favors an increase in lumbar spine bone mineral content (BMC) when compared to subjects with a G allele substitution, which can be do the the increase in lean body mass in this genotype group.
Resumo:
The ingestion of a meal evokes a series of digestive processes, which consist of the essential functions of the digestive system: food transport, secretory activity, absorption of nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine and/or paracrine can be released from various endocrine cells in response to nutrients in the diet. These hormones, in addition to their direct activity, act through specific receptors activating some of the most important functions in the control of energy intake and energy homeostasis in the body. For integration of this complex system of control of gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste receptors (TR) belonging to the family of G proteins coupled receptor expressed in the mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided into several research projects that have been conceived in order to clarify the relationship between TR and nutrients. To define this relationship I have used various scientific approaches, which have gone on to evaluate changes in signal molecules of TR, in particular of the α-transducin in the fasting state and after refeeding with standard diet in the gastrointestinal tract of the pig, the mapping of the same molecule signal in the gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of T2R38 in patients with an excessive caloric intake. The results showed how there is a close correlation between nutrients, TR and hormonal release and how they are useful both in taste perception but also likely to be involved in chronic diseases such as obesity.
Resumo:
The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.
Resumo:
I nucleotidi trifosfato sono, dal punto di vista evoluzionistico, tra le molecole più antiche e conservate tra le specie. Oltre al ruolo che ricoprono nella sintesi degli acidi nucleici e nel metabolismo energetico della cellula, negli ultimi anni è emerso sempre di più il loro coinvolgimento nella regolazione di numerose funzioni cellulari. Questi importanti mediatori cellulari sono presenti nel microambiente e cambiamenti nella loro concentrazione extracellulare possono modulare la funzionalità cellulare. I nucleotidi trifosfato ATP e UTP, presenti nel microambiente midollare, sono dei potenti stimolatori dei progenitori emopoietici. Essi stimolano la proliferazione e l’attecchimento delle cellule staminali emopoietiche, così come la loro capacità migratoria, attraverso l’attivazione di specifici recettori di membrana, i recettori purinergici (P2R). In questo studio abbiamo dimostrato che ATP e UTP esercitano un effetto opposto sul compartimento staminale leucemico di leucemia acuta mieloide (LAM). Abbiamo dimostrato che le cellule leucemiche esprimono i recettori P2 funzionalmente attivi. Studi di microarray hanno evidenziato che, a differenza di ciò che avviene nelle CD34+, la stimolazione di cellule leucemiche con ATP induce la down-regolazione dei geni coinvolti nella proliferazione e nella migrazione, mentre up-regola geni inibitori del ciclo cellulare. Abbiamo poi confermato a livello funzionale, mediante test in vitro, gli effetti osservati a livello molecolare. Studi di inibizione farmacologica, ci hanno permesso di capire che l’attività inibitoria dell’ATP sulla proliferazione si esplica attraverso l’attivazione del recettore P2X7, mentre i sottotipi recettoriali P2 prevalentemente coinvolti nella regolazione della migrazione sono i recettori P2Y2 e P2Y4. Esperimenti di xenotrapianto, hanno evidenziato che l’esposizione ad ATP e UTP sia dei blasti leucemici sia delle cellule staminali leucemiche CD38-CD34+ diminuisce la loro capacità di homing e di engraftment in vivo. Inoltre, il trattamento farmacologico con ATP, di topi ai quali è stata indotta una leucemia umana, ha diminuito lo sviluppo della leucemia in vivo.
Resumo:
Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.